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Chapitre 1

Anneaux

1 Anneaux, sous-anneaux et idéaux

Définition 1.1. Un anneau est une structure de domaine un ensemble A avec une
constante 0 et deux lois binaires + et x satisfaisant
— (A,0,+) est un groupe abélien.
— (A, X) est un semi-groupe, c’est-a~dire x est associatif : (a x b) x ¢ = a x (bx ¢)
pour tout a, b, c € A.
— On a les lois distributives : Pour tout a,b,c € A on a

ax(b+c)=axb+axc et (b+c)xa=bxa+cxa.

Si A posséde un élément 1 tel que ax 1 = 1xa = a pour tout a € A, alors (4,0, 1, +, X)
est un anneau unitaire, ou unifére.
Si x est commutatif, alors A est un anneau commutatif.

Pour une notation plus compacte, on supprime généralement la multiplication x, et la
multiplication est prioritaire sur ’addition. On note A* = A\ {0}.

Remarque 1.2. Dans un anneau unitaire I’addition est automatiquement commuta-
tive : On a

a+b+a+b = (a+b)x1+(a+b)x1 = (a+b)x (14+1) = ax (1+1)+bx (1+1) = a+a+b+b,

ce qui implique b+ a = a + b.

Remarque 1.3. Dans un anneau on a 0 X a = a x 0 = 0 pour tout a € A. En fait,
ax0=ax(0+0)=ax0+ax0,

d’ott @ x 0 = 0. L’égalité 0 x a = 0 se montre de maniére analogue.

Exemple 1.4. — Les corps rationnels Q, réels R et complexes C.
— Les anneaux de polynémes sur ces corps Q[X], R[X] et C[X].
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— Les entiers relatifs Z, ou 'anneau des polyndmes avec coefficients entiers Z[X].

— Les entiers relatifs multiples de k, pour un entier k£ > 1, noté kZ.

— L’anneau des matrices carrées sur un corps M, (Q), M, (R) et M, (C).

— L’anneau des matrices carrées sur les entiers relatifs M,,(Z).

— L’anneau des matrices carrées sur kZ, soit M,,(kZ), pour des entiers n, k > 1.
Ils sont tous unitaires sauf les kZ et M, (kZ) (pour k > 1), et commutatifs sauf les
M,, (pour n > 1).

Définition 1.5. Un anneau est nul si ab = 0 pour tout a,b € A.
Ainsi tout groupe abélien peut étre considéré comme groupe additif d’'un anneau nul.

Exemple 1.6. Si A est un anneau, I’ensemble A[X] des polynomes avec coefficients
dans A est encore un anneau; si A est commutatif et/ou unitaire, A[X] 'est aussi.

Démonstration. Si P =%, a; X" et Q =Y. b; X" (ou presque tous les coefficients sont
0) sont deux polynomes dans A[X], on pose P+ Q = >, (a; + b;) X" et PQ =Y, ¢; X",
avec ¢; = ZZ:O arb;_i (et on note que presque tous les ¢; sont 0). On vérifié comme
pour les polynomes avec coefficients réels que c¢’est un anneau dont le zéro est celui de
A. Si A est unitaire, alors 'unité 1 de A est aussi unité pour A[X]; si A est commutatif,
on voit facilement que A[X] est commutatif. O

Convention. A partir de maintenant, tous les anneaux seront commutatifs (sauf men-
tion au contraire).

Définition 1.7. Une partie non-vide B C A est un sous-anneau si B est un sous-
groupe additif, et clos par multiplication. C’est-a-dire, si a,b € B alors a —b € B et
ab € B. On le note B < A.

Un sous-anneau B < A est un idéal si ab € B pour tout a € A et b € B. On le note
I <A

Remarque 1.8. Si A n’est pas commutatif, pour qu’un sous-anneau B soit un idéal,
il faut aussi demander ba € B pour tout a € Aet b € B.

Exemple 1.9. L’anneau des entiers de Gauss est 'anneau Z[i] = {a +ib € C: a,b €
Z}. C’est un sous-anneau de C.

Exemple 1.10. Si A est un anneau (commutatif), I’ensemble X - A[X] des polynomes
non-constants ou 0 forme un idéal.

Définition 1.11. Soient A et B deux anneaux. L’anneau produit A x B est 'anneau
dont le groupe additif est la somme directe A & B des groupes additifs de A et de
B, c’est-a-dire avec zéro (0,0) et addition (a,b) + (a/,0') = (a + a/,b+ V'), et dont la
multiplication est donnée par (a,b) (a’,0’) = (ad’, bl).
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Définition 1.12. Soit A un anneau et X C A une partie. L’anneau engendré par X
est le plus petit sous-anneaux de A qui contient X ; il est noté (X). L’idéal engendré
par X est le plus petit idéal de A qui contient X ; il est noté (X).

Si X = {wg,...,2,} est fini, on note (X) = (zg,...,z,) et (X) = (zo,...,z,).
Soient X et Y deux parties de A.
— Onpose XY = {zy: 2z € X, y € Y}, 'ensemble des produit d'un élément de X
avec un élément d’Y.
— On définit récursivement X! = X, et X" = X X"
— (X)), est le sous-groupe additif engendré par X.

Proposition 1.13. On a (X) = (X" :n e N*), et (X) = (X, AX), ; sia € A alors
(a) = Aa+ Za. Si A est unitaire, (X) = (AX),, et pour a € A on a (a) = Aa.

Démonstration. Ce sont des sous-groupes additifs par définition, et par distributivité
pour Aa + Za et Aa. Par associativité et distributivité, (X" : n € N*), est clos par
produit, et (X, AX), ainsi que Aa + Za sont clos par multiplication par des éléments
de A (et donc clos par produit). Ainsi (X™ : n € N*), est un sous-anneau et (X, AX)
et Aa + Za sont des un idéaux. Les deux contiennent X, et tous leurs éléments sont
dans tous les sous-anneaux/idéaux qui contiennent X ; si A est unitaire, X C AX et
Za < Aa. O

Exemple 1.14. On va étudier les petits anneau de cardinalité n.

1. Le seul anneau de cardinal 1 est ’anneau trivial {0}.

2. Soit A = {0,a} un anneau de cardinal 2. Alors le groupe additif est isomorphe
a 7/27, donc a + a = 0. Pour le groupe multiplicatif, il y a deux options : Soit
a® =0 et A est nul, soit > =1 et A= Z/2Z en tant qu’anneau.

3. Soit A un anneau de cardinal 3. Son groupe additif est isomorphe a Z/3Z, le
seul groupe de cardinal 3. Si A est unitaire, on a A = {0,1,a} avec 1 + 1 = q,
douna?>=(1+1)(1+1)=1+1+1+1=1.

Exercice 1.15. Classifier tous les anneaux de cardinal 3.

Exercice 1.16. Classifier tous les anneaux commutatifs unitaires de cardinal 4.

2 Morphismes et anneau quotient

Définition 2.1. Soit A un anneau et I < A un idéal. Le quotient A/I est 'anneau dont
le groupe additif est le groupe quotient A/I, avec multiplication (a+1) (b+1) = (ab+1).

Démonstration. 11 faut montrer que la multiplication est bien définie. On considére
donc a,a’,b,b' € Aaveca+I1=a +Tetb+I1=b+1. Alorsa—d €letb—0V €1,
ce qui donne

ab—a'V =alb—V)+ab —db =alb—b)+(a—ad ) €al + 1V C I.
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Ainsi ab+ I = a’b/ + I et la multiplication ne dépend pas du choix de représentant.
L’associativité en découle, puisque

((a+1)(b+1)) (c+1) = (ab+1)(c+1) = abe+I = (a+I)(be+1) = (a+I)((b+I)(c+I)) L.

Remarque 2.2. Si A est commutatif et/ou unitaire, A/I aussi. Si 1 € A est 'unité,
1+ 1 est I'unité de A/I.

Définition 2.3. Soient A et B deux anneaux. Un homomorphisme de groupes additifs
f:A— B est un morphisme d’anneau si f(aa’) = f(a) f(a’) pour tout a,a’ € A.

Si f est bijectif, alors f est un isomorphisme (d’anneaux). Si de plus A = B, alors f
est un automorphisme (d’anneaux).

Si A et B sont unitaires, f est un homomorphisme (d’anneaux) unitaire(s)s si en plus

f(14) = 15.
Remarque 2.4. Il est clair que I'image im f est un sous-anneau de B.

Exemple 2.5. Les applications suivantes sont des morphismes d’anneau.

1. Si A est commutatif et a € A, Papplication

fot AIX] — A, P P(a).
2. Si A et B sont deux anneaux, ’application

T:AXx B — A, (a,b) — a.
3. Si A et B sont deux anneaux, ’application

t:A— Ax B, a— (a,0).

Cependant, si A et B sont unitaires, A x B l'est aussi avec unité (1,1), mais

f(1) =(1,0) # (1,1). Ainsi f n’est pas un homomorphisme unitaire.
L’application R x R — C donné par (z,y) — x + iy ne préserve pas la multiplication.
Ce n’est donc pas un morphisme d’anneau.

Définition 2.6. Soit f : A — B un morphisme d’anneau. Son noyau est ker f = {a €
A : f(a) = 0}, c’est-a-dire son noyau en tant que homomorphisme additif.

Proposition 2.7. Soit f : A — B un morphisme d’anneau. Alors ker f est un idéal
dans A, et imf = A/ker f.

Démonstration. C’est un sous-groupe additif. Si a € ker f ou a’ € ker f, alors f(a) =0
ou f(b) =0, d’on f(ab) = f(a)f(b) = 0. Ainsi ker f est clos par multiplication & gauche
et a droit par des éléments de A, et en particulier clos par multiplication. Ainsi ker f
est un idéal.

L’application a + ker f +— f(a) est une bijection de groupes additifs entre A/ker f et
im f. Elle préserve la multiplication. C’est donc un isomorphisme d’anneaux. ]
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Remarque 2.8. Si A est unitaire, alors imf est un sous-anneau unitaire de B, mais
son unité f(14) n’est pas forcément unité de B.

Théoréme 2.9. Soient A et B deur anneauz, f : A — B un morphisme d’anneauz,
et I < A un idéal de A. Soit m : A — A/I la projection canonique. Alors il y a un
morphisme g : A/I — B tel que f = gom si et seulement si I < ker f.

Démonstration. S'il y a g : A/l — B avec f = gom et a € I, alors m(a) = 0y, et
g(0;) = 0p. Donc f(a) = (gom)(a) =0p et a € ker f. Ainsi I < ker f.

Réciproquement, soit I < ker f. Pour a +1 € A/I on pose g(a+ I) = f(a) € B. On
vérifie que g est bien défini : Sia’ € Aaveca+ 1 =a' + 1, alorsa—a’ € I <ker f, et

fla) = fla—d +d) = fla—d)+ f(d) =0+ fd) = f(d).

Donc g : A/I — B est bien défini, et pour tout a € A on a bien (gow)(a) =gla+1) =
f(a),dou f=gom. O

Proposition 2.10. Soit I < A. Alors m : a — a + I induit une bijection entre les
idéaux de A qui contiennent I et les idéauzx de A/I.

Démonstration. Soit I < J < A. Alors f[J] = J/I est un sous-groupe additif de A qui
est clos par multiplication par des éléments de A/I, puisque (a + I)J = aJ = J. Donc
7[J] est un idéal de A/I.

Réciproquement, si J est un idéal de A/I, soit J = 71[J] son image réciproque. C’est
un groupe additif, et pour tout a € A on a w[aJ] = 7w(a)n[J] = 7(a)] = J, don
aJ < J. Ainsi J est un idéal de A.

Enfin, 7 induit une bijection entre les sous-groupes additifs de A qui contiennent I et
les sous-groupes additifs de A/I, qui se restreint en une bijection entre ceux qui sont
des idéaux. ]

3 Ideaux

Soit X un ensemble. Une famille (Y; : ¢ € I) de parties de X est une chaine si pour
touti,j€fonaY; CY;ouY; CY,

Proposition 3.1. Soit A un anneau, et {B; : i € I} une famille non-vide de sous-
anneaus de A.

1. L’intersection (\;c; B; est un sous-anneau de A.

2. Si tous les B; sont des idéauz, alors ﬂiel B; est un idéal.

3. Siles {B; :i € I} forment une chaine, la réunion |J,; B; est un sous-anneau

de A.

4. Siles {B; i€ I} forment une chaine d’idéaus, la réunion | J,c; B; est un idéal.
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Démonstration. 1. Ona0 € B;pourtouti € I,dot0 e ()., B;i. Sib,b' € ,; Bi,
alors b,b' € B; pour tout i € I; puisque les B; sont des sous-anneaux, on a
b—b,bb" € B; pour tout i € I, et b— ¥, bV € (,; B;. Ainsi (,.; B; est un
sous-anneau.

el

2. Siles B; sont des idéaux, alors pour tout b € (),.; B; et a € Aon a b € B; pour
tout ¢ € I, d’ott ab € B;, et ab € (),c; B;. Ainsi [),; B; est un idéal.

3. Puisque la chaine n’est pas vide, (J,c; B; # 0. Si b,0' € J,c; Bi, alors il y a
i,j € Iavecbhe B;etl € B;. On peut supposer que B; C B;. Alors b,0' € Bj,
et donc b — b, bV € B; C |J,; Bi- Ainsi | J,.; B; est un sous-anneau.

4. Si de plus tous les B; sont des idéaux, alors pour tout b € J,.; Biet a € Aily
at € laveche€ By, dotab e B;etab € |J,.; B;. Ainsi (J,; B; est unidéal. [

el

i€l
En particulier 'intersection de deux idéaux est un idéal.
Définition 3.2. Soit A un anneau, et [ et J deux idéaux.

1. La sommede [ et Jestl'idéal I +J ={a+b:a€l, be J}.
2. Le produit de I et J est I'idéal IJ = {(ab:a €I, b€ J),.

On note que I 4+ J = (I, J) est le plus petit idéal contenant [ et .J.

Remarque 3.3. Pour deux ensembles X,Y C A on avait défini XY comme I’ensemble
{zy:x € X, y € Y}. Pour deux idéauz I,J <9 A on prend 1'idéal engendré.

Exemple 3.4. Si A=Z et n €N, alors (n) =nZ. Sim € Non a
(m,n) = (m) + (n) = mZ +nZ = (m An)Z,

(m) (n) = mZnZ = mnZ, et
(m)N(n) = (mVn)Z.

Définition 3.5. Soit A un anneau. Deux idéaux [ et J sont étrangers (ou premiers
entre eux) si I +J = A.

Proposition 3.6. Soit A un anneau unitaire, et I, J deux idéauz étrangers. Alors

IJ=1NJ.

Démonstration. Puisque I et J sont des idéaux,ona lJ < [lTetlJ < J,doulJ < INJ.
Réciproquement, puisque A=T+Jilyaieletje Javeci+j=1. SoitaelINJ.
Alors a = (i + jla=1ia+ja € IJ, don INJ < 1J et on a égalité. O

Théoréme 3.7 (Théoréme des restes chinois). Soit A un anneau unitaire, et Iy, ..., I,
des idéaur deux-a-deux étrangers. Alors le morphisme d’anneaux

o AJLN--N1L)— AL x - AJI,
c+(LN--NL)— (e+L,...,2+1,)

est un isomorphisme.



Démonstration. Par récurrence sur n, le cas n = 1 étant trivial. On suppose donc que
Ii,...,I,,J sont deux-a-deux étrangers, et que = + I +— (x + I1,...,z + I,) est un
isomorphisme, ou I = I; N--- N I,. Puisque J est étranger a chaque I, il y a i, € I}
et ji € J avec iy, + ji, = 1. Alors 1 = [[}_, (i + Jjx) € @142+ i, +J C I+ J. Donc I et
J sont étrangers. On considére donc

Al(Ln---NnI,NJ)=A/(INJ)— A/l xAJJ — A/} x --- x AT, x A/ J;

d’aprés 'hypothése de récurrence il suffit de montrer que p : A/(INJ) — A/I x A/J
est un isomorphisme. On est donc réduit au cas n = 2.
Il est clair que le morphisme est injectif. On considére (x + I,y + J) € A/I x A/J.
Soient i € I et j € J tels que ¢ + j = 1. On pose z = iy + jx. Alors
z+l=iy+je+l=iv+je+I=0G+jz+1=x+1, et
2+ J=wy+jr+J=iy+jy+J=>(+jy+J=y+J

Ceci montre la surjectivité. O

On note que si zg € A est une solution particuliére du systéme de congruences z € ag+1j

pour k = 1,... n, alors 'ensemble des solutions est précisément zy + (I;y N --- N 1,).
Exemple 3.8. Soient ny,...,n; € Z deux-a-deux premiers entre eux. Alors pour tout
ai,...,ap €EZilyax €Ztel que x =a; modn; pouri=1,..., k.

Démonstration. Sin; et n; sont premiers entre eux, d’apres la relation de Bézout il y
au,v € Z avec n;u+n;v = 1. Donc (n;) + (n;) = Z, et (n;) et (n;) sont étrangers. On
conclut avec le théoréme des restes chinois. O

4 Inversibilité, anneaux intégres

Définition 4.1. Soit A un anneau (commutatif). Un élément a € A* est un diviseur
de zéro s’ily a b € A* avec ab = 0. Dans ce cas, b est aussi un diviseur de zéro.

Un anneau sans diviseur de zéro est un anneau intégre. Attention : Parfois on demande
en plus que ’anneau soit unitaire !

Si A est unitaire, un élément a € A est inversible s’il y a b € A avec ab = 1.
L’ensemble des éléments inversibles est noté A*. C’est un groupe multiplicatif.

Un anneau commutatif non-trivial dont tous les éléments non-nuls sont inversibles est
un corps. Dans ce cas A* = A*.

Remarque 4.2. Ne pas confondre A* et A* = A\ {0}.

Lemme 4.3. 1. Un élément inversible n’est pas diviseur de zéro. En particulier un
corps est integre.

2. Si a n’est pas diviseur de zéro et ab = ac, alors b = c. En particulier un anneau
integre a simplification multiplicative.



3. Un anneau (commutatif) A est un corps ssi A* est un groupe.

Démonstration. 1. Si ab=0 et a est inversible, alors b = a ab = a~'0 = 0.
2. Si ab = ac alors a(b — ¢) = 0. Comme a n’est pas diviseur de zéro, b —c = 0 et
b=rc.
3. Evident. O

Lemme 4.4. Soit A un anneau intégre. Alors un ideal I est propre (c’est-a-dire [ # A)
sst A ne contient pas d’élément inversible. En particulier un corps n’a pas d’idéal propre
non-trivial.

Démonstration. Si I = A alors 1 € I et I contient un élément inversible.
Réciproquement, si a € I est inversible, alors 1 =ala € T et A= A1 C I. n

Définition 4.5. Soit A un anneau, et I < A un idéal.
— I est premier si pour tous a,b € A,siabe [ alorsa € [ oubel.
— I est maxzimal si I est propre et il n’y a pas d’idéal J avec I < J < A.

Théoréme 4.6. Soit A un anneau, et I < A un idéal.
1. I est premier si et seulement si A/I est intégre.
2. Si A/I est un corps, alors I est mazimal.

3. Si A est unitaire et I mazimal, alors A/I est un corps.

Démonstration. 1. Soit I premier, et a,a’ € A avec (a+ I)(a'+ 1) =0+ 1. Alors
ad' +1 = (a+I)(a + 1) =1 et ad’ € I. Puisque I est premier, soit a € I et
a+1=0+1,soita €leta +1=0+1I. Donc A/I est integre.
Réciproquement, soit A/I intégre et a,a’ € A avec aa’ € I. Donc (a+1)(a'+1) =
0+ I; puisque A/I est intégre, soit a+1 =0+ 1T eta € I, soita’ +1=0+1
et ' € I. Ainsi [ est premier.

2. Soit A/I un corps. Alors A/I n’a pas d’idéal non-trivial propre. D’aprés la

proposition il n’y a pas d’idéal strictement entre I et A. Donc [ est maximal.
De plus A/I contient au moins deux éléments, et I est propre.

3. Soit A unitaire et I maximal. Soit a + 1 € (A/I)*, donc a ¢ I. Par maximalité,
I <(a,])=Aa+1=A llyadonca € Aetcel avec a'a+ c= 1. Donc
(@ +1I)(a+1)=1+1eta+ I estinversible dans A/I. O

Remarque 4.7 (Hors programme). En fait, pour le dernier point il suffit de supposer
que A/I est non-nul : Soit / maximal et A/I non-nul. Soit a+1 € (A/I)*. Alors a ¢ 1,
et I <(a,I)don A= (a,I)=(a)+ = Aa+ Za+ I par maximalité.

Si Aa < I, alors Za+1=A. Or, (za+I)(Za+1) = zz’aa+ 1 C Aa+ I = I pour tout
2,2 € Z, et A/I est un anneau nul, une contradiction. Donc Aa £ I et Aa + I = A.
Alorsilyacée I et e € A avec ea + ¢ = a. Ainsi

(e+DNa+I)=ea+I=a—c+I=a+1.
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De méme, pour tout o’ € Ailyac € [ etV € Aavecba+c =d',dou (V+1)(a+1) =
Va+I=d —c+1=d+1 Donc

e+ D@+ =(e+DHV+Da+) =0V +1)(a+1)=0d+1.

Ainsi A/T est unitaire, avec unité e+ 1. Alorsily a ¢’ € I et a” € A avec a’a+ " = e,
et (a"+1)(a+1)=d"a+1=e—"+1=e+1. Donca+ I est inversible dans A/I,
et A/l est un corps.

Remarque 4.8. Le groupe additif Z/pZ pour p premier considéré comme anneau
nul n’est pas un corps, mais I = (0) est le seul sous-groupe propre et donc un ideal
maximal, ce qui montre que la condition A/I non-nul est nécessaire.

Corollaire 4.9. Si A est unitaire, tout idéal maximal est premier.
Démonstration. Si I est maximal, A/I est un corps, donc intégre, et I est premier. []

Théoréme 4.10. Soit A un anneau unitaire et I < A un idéal propre. Alors I est
contenu dans un idéal maximal.

Avant la démonstration il nous faut introduire un peu de terminologie.

Définition 4.11. Soit X un ensemble. Une partie F C P(X) est inductive si toute
chaine (Y; : ¢ € I) dans F a un majorant dans F, c’est & dire un élément Y € F tel
que Y; CY pour tout 2 € I.

Fait 4.12 (Lemme de Zorn). Si F est inductive, alors F a des éléments mazimaux.

Ce fait est une des 1001 versions équivalentes de ’axiome du choix. Sauf dans des cas
particuliers (ot 'on n’en a pas vraiment besoin), il est donc impossible d’obtenir un
tel élément maximal explicitement.

Démonstration du Théoreme[{.10. Soit X = A et F ={J <A : I < J} 'ensemble des
idéaux propres de A contenant I.

Soit (J; : s € S§) une chaine non-vide dans F. Alors |J, g Js est un idéal dans A
contenant / majorant la chaine; puisque 1 ¢ J; pour tout s € Sonal ¢ J,.qJs et
Uses Js € F. Ainsi F est inductif et posséde un élément M maximal d’aprés le lemme
de Zorn. Alors M es un idéal maximal contenant I. O

[’exemple suivant montre que la condition que A soit unitaire est nécessaire.

Exemple 4.13. Soit A 'anneau des polynémes sur Z sans terme constant en variables
X, XV2 XVA XY augmenté de 0, avec bien sur (X1/2n+1)2 = XY?" pour
tout n € N. On note que pour tout P € A et n € N suffisamment grand il y a Q) € A
avec P = QX'/?".

Soit I,, = (X'/2"). Puisque X'/?" divise X'/?" pour k > n, on a (X/2") < (XV/?") et
les (I, : n € N) forment une chaine croissante. Or, A = |J, _n 1o Si Ip < <A avec [

neN -1
maximal, alors A/I est non-nul, puisque tout P € A\ I s’écrit comme P = QX'/?",
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Ainsi A/I est un corps d’aprés le théoréme . Puisque / < Aet J,cyIn = Ailya
n € N minimal tel que I,, £ I'; on note que n > 0. Soit P € I,\I. Alors P> € I,,_; < I.
Comme [ est maximal, il est premier, et P € I, une contradiction. Donc Iy n’est pas
contenu dans un idéal maximal.

Exemple 4.14. Soit n € N. Alors nZ est un idéal dans Z, et Z/nZ est un anneau
commutatif unitaire. Sin =0 on anZ = {0} et Z/nZ =7Z.Sin=1on anZ = Z et
Z/nZ = {0}, Panneau trivial. On supposera donc n > 2.

Lemme 4.15. Z/nZ est intégre si et seulement si Z/nZ est un corps si et seulement
st m est premier, pour n > 2.

Démonstration. Supposons d’abord n = kf composé, avec 1 < k, ¢ < n. Alors k+nZ #
0+ nZ, et L +nZ # 0+ nZ, mais

(k+nZ)(l+nZ)=kl+nZ =n+nZ =0+ nZ.

Donc Z/nZ n’est pas intégre.

Réciproquement, supposons n premier. Alors pour tout & € Z soit n divise k et k+nZ =
0+ nZ, soit k et n sont premiers entre eux. Dans ce cas, d’apreés le théoréme de Bézout
il y a des entiers relatifs s,t € Z tels que sk + tn = pged(k,n) = 1. Alors

(s +nZ)(k+nZ)=(sk+nZ)=1—kn+nZ=1+nZ.
Ainsi tout k + nZ non-nul est inversible, et Z/nZ est un corps. O
C’est un cas particulier d’un théoréme plus général.
Proposition 4.16. Un anneau intégre fini est un corps.

Démonstration. Soit a € A*. Alors 'application A, : x — ax est injective : Si ax = ax’,
alors d’aprés lemme [£.3]2 on a x = 2’. Or, A est fini, et toute application A — A
injective est surjective. Par surjectivité de A, il y a un élément e € A avec ae = a. Si
b € A est quelconque, alors ab = aeb, d’ou b = eb encore par lemme [£.3]2. Ainsi e est
une unité multiplicative.

Encore par surjectivité de A, il y a @’ € A avec aa’ = e. Donc a posséde un inverse
multiplicatif a=! = a’, et A est un corps. O]

En fait, le Théoréeme de Wedderburn asserte qu’on a pas besoin de supposer la com-
mutativité : Tout anneau fini sans diviseur de zéro est un corps.

On va maintenant généraliser la construction de Q & partir de Z a un anneau intégre
quelconque.

Théoréme 4.17 (Corps des fractions). Soit A un anneau intégre. Alors il y a un unique
(a isomorphisme pres) plus petit corps K contenant A. Tout élément de K s’écrit de
la forme ab™' avec a,b € A (inverse et produit calculé dans K ). C’est le corps des
fractions de A. Si f : A — L est un morphisme d’anneauz injectif avec L un corps, il
se prolonge en morphisme f: K — L.
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Démonstration. On imagine que A se plonge dans un corps K. Alors K contient tous
les éléments de la forme ab~! avec a € A et b € A*. On note que la collection de tels
quotients est clos par addition, soustraction, multiplication et réciproque, c¢’est donc
un sous-corps. Par minimalité K = {ab™' : a € A, b € A*}. On va coder I'élément ab~*
par la paire (a,b). Or, ce codage n’est pas unique; on appellera paires qui donnent le
méme quotient ~-équivalents : (a,b) ~ (a'l') < ab™' = d'V/™! & abl = d'b.

Pour ce faire, on n’a pas besoin de 'existence a priori de K — on le construira. Sur
A x A* on définit une relation d’équivalence par (a,b) ~ (da’,b') si et seulement si
all = a’b. On note que (a, b) ~ (ac, bc) pour ¢ # 0, et que ~ est réflexif et symétrique.
On vérifie la transitivité : si (a,b) ~ (a/,b") ~ (a”,V"), alors ab' = a'b et a'b" = a"¥V,
d'ott ab'b” = a’bb" = bl et ab” = a"b par simplification, ce qui donne (a,b) ~ (a”,V").
Ainsi ~ est une relation d’équivalence, dont on note la classe de (a, b) par [a, b].

On pose K = (A x A*)/~, et définit une addition & et une multiplication ® sur K par
les formules qu’on connait des quotients ab™! :

[a,b] @ [a’, ] = [ab' + a'b, D] et [a,b] @ [a’, V] = [ad’, bV'].

Il faut vérifier que la somme et le produit ne dépendent pas du choix des représentants.
Par symeétrie il suffit de vérifier sur la gauche. Soit donc [a, b] = [a”, "], et donc ab” =
CLHb. AlOI‘S {a//7b//] @ [a/7b/] — [a//b/ _|_ a//b//7 b//b/] et I:a//, b//} ® I:a//’ b/] _ [ // / b//b/] OI‘,

[ab’ + a'b, bb] = [ab'V" + a'bb", bb'b"] = [a"V'b + a'bb", bb'V"] = [a"V + a'V", V'] et

[aa//7 bb/] — [a/a/b//, bb/b//] — [a//alb, bb/b//] [ " ! b//b/]

Donc @ et ® sont bien définis.
On fixe ¢ € A* et pose 0 = [0,c] et 1 = [¢,c|. Ces classes ne dépendent pas du choix
de c. Pour [a,b] € K on pose —[a,b] = [—a,b], et si a # 0 on pose [a,b]™* = [b,a]. On
vérifie facilement que ceci ne dépend pas du choix des représentants. Alors

la,b] & [0, ¢] = [ac + 0b, bc] = [a, D] et [a,b] ® [c, c] = [ac, be] = [a, 1],
et donc
la,b] & (—|a,b]) = [a,b] & [—a,b] = [ab — ab,bb] = [0,bb] =0, et
[a,b] ® [a,b] " = [a,b] ® [b,a] = [ab, ab] = 1.

Il est évident de la définition que @ et ® sont commutatifs. On vérifie I’associativité :

([a,b] & [a',V]) ® [a",b"] = [ab + a'b, bb'] & [a", V"] = [ab'V" + a'bb" + a" DV, bB'V"]
= [a,b] ® [a'V" + a"V',b'V"] = [a,b] ® ([d', V] & [a”",b"]), et
[aa’, bb']| @ [[a”,0"] = [ad'a”, bV'D"] = [a,b] @ [a'a”, V'b"]
= [a,b] ® ([, V] ® [a",V"])

([a,0] ® [a,b]) @ [a", V"]

et la distributivité :
([a,b] + [a',V]) @ [a”", "] = [ab' + a'b, bV] @ [a”, V"] = [aad"b' + a'a"b, bb'V"]
= [ad"Vb" + d'a" b, BHB"E"] = [aa”, bb") @ [a'a”, BV
=[a,b] @ [a", V"] & [d, V] @ [a",b"].
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Ainsi (K,0,1,®,®) est bien un corps.

On considére f: A — K défini par a — [ac, ] (on note que f(a) ne dépend pas de c).
Si f(a) = f(a') alors [ac, ] = [d'c, ], soit ac® = d'c® et a = d’; ainsi f est injectif. On
a f(0)=1[0c,c] =0, f(1) =[lc,c] =1 (si A est unitaire), et f préserve I’addition et la
multiplication :

fla+b)=[(a+b)c,c] = lacc + bee, cc] = [ac, c] + [be, c] = f(a) @ f(b), et
f(ab) = [abc, c] = [acbe, cc] = [ac, ] @ [be, c] = f(a) @ f(b).

Ainsi f plonge A dans K, et tout élément [a,b] € K est de la forme
fla)® f(b)~" = lac,d] @ [be, ]! = [ac, [e,bc] = [ac?, be?] = [a, D).

On identifie donc A avec son image dans K.

Si L est un autre corps et ¢ : A — L est un plongement, on prolonge g sur K par
g : la,b] = g(a)g(b)~!; on vérifie que g ne dépend pas des choix des représentants,
que g(0) = 0 et que g prolonge g et préserve 1'addition et la multiplication. Ainsi g est
un homomorphisme de K dans L. Or, ker g est un idéal de K qui ne peut pas étre K
entier puisque ker gN A = {0}. Mais un idéal d’un corps est soit (0) soit le corps entier.
Ainsi ker g = (0) et g est injectif, ce qui montre que K est minimal et unique. O
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