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Chapitre 1

Anneaux

1 Anneaux, sous-anneaux et idéaux
Définition 1.1. Un anneau est une structure de domaine un ensemble A avec une
constante 0 et deux lois binaires + et × satisfaisant

— (A, 0,+) est un groupe abélien.
— (A,×) est un semi-groupe, c’est-à-dire × est associatif : (a× b)× c = a× (b× c)

pour tout a, b, c ∈ A.
— On a les lois distributives : Pour tout a, b, c ∈ A on a

a× (b+ c) = a× b+ a× c et (b+ c)× a = b× a+ c× a.

Si A possède un élément 1 tel que a×1 = 1×a = a pour tout a ∈ A, alors (A, 0, 1,+,×)
est un anneau unitaire, ou unifère.
Si × est commutatif, alors A est un anneau commutatif.

Pour une notation plus compacte, on supprime généralement la multiplication ×, et la
multiplication est prioritaire sur l’addition. On note A∗ = A \ {0}.

Remarque 1.2. Dans un anneau unitaire l’addition est automatiquement commuta-
tive : On a

a+b+a+b = (a+b)×1+(a+b)×1 = (a+b)×(1+1) = a×(1+1)+b×(1+1) = a+a+b+b,

ce qui implique b+ a = a+ b.

Remarque 1.3. Dans un anneau on a 0× a = a× 0 = 0 pour tout a ∈ A. En fait,

a× 0 = a× (0 + 0) = a× 0 + a× 0,

d’où a× 0 = 0. L’égalité 0× a = 0 se montre de manière analogue.

Exemple 1.4. — Les corps rationnels Q, réels R et complexes C.
— Les anneaux de polynômes sur ces corps Q[X], R[X] et C[X].
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— Les entiers relatifs Z, ou l’anneau des polynômes avec coefficients entiers Z[X].
— Les entiers relatifs multiples de k, pour un entier k > 1, noté kZ.
— L’anneau des matrices carrées sur un corpsMn(Q),Mn(R) etMn(C).
— L’anneau des matrices carrées sur les entiers relatifsMn(Z).
— L’anneau des matrices carrées sur kZ, soitMn(kZ), pour des entiers n, k > 1.

Ils sont tous unitaires sauf les kZ et Mn(kZ) (pour k > 1), et commutatifs sauf les
Mn (pour n > 1).

Définition 1.5. Un anneau est nul si ab = 0 pour tout a, b ∈ A.

Ainsi tout groupe abélien peut être considéré comme groupe additif d’un anneau nul.

Exemple 1.6. Si A est un anneau, l’ensemble A[X] des polynômes avec coefficients
dans A est encore un anneau ; si A est commutatif et/ou unitaire, A[X] l’est aussi.

Démonstration. Si P =
∑

i aiX
i et Q =

∑
i biX

i (ou presque tous les coefficients sont
0) sont deux polynômes dans A[X], on pose P +Q =

∑
i(ai + bi)X

i et PQ =
∑

i ciX
i,

avec ci =
∑i

k=0 akbi−k (et on note que presque tous les ci sont 0). On vérifié comme
pour les polynômes avec coefficients réels que c’est un anneau dont le zéro est celui de
A. Si A est unitaire, alors l’unité 1 de A est aussi unité pour A[X] ; si A est commutatif,
on voit facilement que A[X] est commutatif.

Convention. A partir de maintenant, tous les anneaux seront commutatifs (sauf men-
tion au contraire).

Définition 1.7. Une partie non-vide B ⊆ A est un sous-anneau si B est un sous-
groupe additif, et clos par multiplication. C’est-à-dire, si a, b ∈ B alors a − b ∈ B et
ab ∈ B. On le note B ≤ A.
Un sous-anneau B ≤ A est un idéal si ab ∈ B pour tout a ∈ A et b ∈ B. On le note
I E A.

Remarque 1.8. Si A n’est pas commutatif, pour qu’un sous-anneau B soit un idéal,
il faut aussi demander ba ∈ B pour tout a ∈ A et b ∈ B.

Exemple 1.9. L’anneau des entiers de Gauss est l’anneau Z[i] = {a + ib ∈ C : a, b ∈
Z}. C’est un sous-anneau de C.

Exemple 1.10. Si A est un anneau (commutatif), l’ensemble X ·A[X] des polynômes
non-constants ou 0 forme un idéal.

Définition 1.11. Soient A et B deux anneaux. L’anneau produit A × B est l’anneau
dont le groupe additif est la somme directe A ⊕ B des groupes additifs de A et de
B, c’est-à-dire avec zéro (0, 0) et addition (a, b) + (a′, b′) = (a + a′, b + b′), et dont la
multiplication est donnée par (a, b) (a′, b′) = (aa′, bb′).
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Définition 1.12. Soit A un anneau et X ⊆ A une partie. L’anneau engendré par X
est le plus petit sous-anneaux de A qui contient X ; il est noté 〈X〉. L’idéal engendré
par X est le plus petit idéal de A qui contient X ; il est noté (X).

Si X = {x0, . . . , xn} est fini, on note 〈X〉 = 〈x0, . . . , xn〉 et (X) = (x0, . . . , xn).
Soient X et Y deux parties de A.

— On pose XY = {xy : x ∈ X, y ∈ Y }, l’ensemble des produit d’un élément de X
avec un élément d’Y .

— On définit récursivement X1 = X, et Xn+1 = XXn.
— 〈X〉+ est le sous-groupe additif engendré par X.

Proposition 1.13. On a 〈X〉 = 〈Xn : n ∈ N∗〉+ et (X) = 〈X,AX〉+ ; si a ∈ A alors
(a) = Aa+ Za. Si A est unitaire, (X) = 〈AX〉+, et pour a ∈ A on a (a) = Aa.

Démonstration. Ce sont des sous-groupes additifs par définition, et par distributivité
pour Aa + Za et Aa. Par associativité et distributivité, 〈Xn : n ∈ N∗〉+ est clos par
produit, et 〈X,AX〉+ ainsi que Aa+ Za sont clos par multiplication par des éléments
de A (et donc clos par produit). Ainsi 〈Xn : n ∈ N∗〉+ est un sous-anneau et 〈X,AX〉+
et Aa + Za sont des un idéaux. Les deux contiennent X, et tous leurs éléments sont
dans tous les sous-anneaux/idéaux qui contiennent X ; si A est unitaire, X ⊆ AX et
Za ≤ Aa.

Exemple 1.14. On va étudier les petits anneau de cardinalité n.
1. Le seul anneau de cardinal 1 est l’anneau trivial {0}.
2. Soit A = {0, a} un anneau de cardinal 2. Alors le groupe additif est isomorphe

à Z/2Z, donc a+ a = 0. Pour le groupe multiplicatif, il y a deux options : Soit
a2 = 0 et A est nul, soit a2 = 1 et A ∼= Z/2Z en tant qu’anneau.

3. Soit A un anneau de cardinal 3. Son groupe additif est isomorphe à Z/3Z, le
seul groupe de cardinal 3. Si A est unitaire, on a A = {0, 1, a} avec 1 + 1 = a,
d’où a2 = (1 + 1) (1 + 1) = 1 + 1 + 1 + 1 = 1.

Exercice 1.15. Classifier tous les anneaux de cardinal 3.

Exercice 1.16. Classifier tous les anneaux commutatifs unitaires de cardinal 4.

2 Morphismes et anneau quotient
Définition 2.1. Soit A un anneau et I E A un idéal. Le quotient A/I est l’anneau dont
le groupe additif est le groupe quotient A/I, avec multiplication (a+I) (b+I) = (ab+I).

Démonstration. Il faut montrer que la multiplication est bien définie. On considère
donc a, a′, b, b′ ∈ A avec a+ I = a′ + I et b+ I = b′ + I. Alors a− a′ ∈ I et b− b′ ∈ I,
ce qui donne

ab− a′b′ = a(b− b′) + ab′ − a′b′ = a(b− b′) + (a− a′)b′ ∈ aI + Ib′ ⊆ I.
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Ainsi ab+ I = a′b′ + I et la multiplication ne dépend pas du choix de représentant.
L’associativité en découle, puisque(
(a+I)(b+I)

)
(c+I) = (ab+I)(c+I) = abc+I = (a+I)(bc+I) = (a+I)

(
(b+I)(c+I)

)
.

Remarque 2.2. Si A est commutatif et/ou unitaire, A/I aussi. Si 1 ∈ A est l’unité,
1 + I est l’unité de A/I.

Définition 2.3. Soient A et B deux anneaux. Un homomorphisme de groupes additifs
f : A→ B est un morphisme d’anneau si f(aa′) = f(a) f(a′) pour tout a, a′ ∈ A.
Si f est bijectif, alors f est un isomorphisme (d’anneaux). Si de plus A = B, alors f
est un automorphisme (d’anneaux).
Si A et B sont unitaires, f est un homomorphisme (d’anneaux) unitaire(s)s si en plus
f(1A) = 1B.

Remarque 2.4. Il est clair que l’image imf est un sous-anneau de B.

Exemple 2.5. Les applications suivantes sont des morphismes d’anneau.
1. Si A est commutatif et a ∈ A, l’application

fa : A[X]→ A, P 7→ P (a).

2. Si A et B sont deux anneaux, l’application

π : A×B → A, (a, b) 7→ a.

3. Si A et B sont deux anneaux, l’application

ι : A→ A×B, a 7→ (a, 0).

Cependant, si A et B sont unitaires, A × B l’est aussi avec unité (1, 1), mais
f(1) = (1, 0) 6= (1, 1). Ainsi f n’est pas un homomorphisme unitaire.

L’application R× R→ C donné par (x, y) 7→ x+ iy ne préserve pas la multiplication.
Ce n’est donc pas un morphisme d’anneau.

Définition 2.6. Soit f : A→ B un morphisme d’anneau. Son noyau est ker f = {a ∈
A : f(a) = 0}, c’est-à-dire son noyau en tant que homomorphisme additif.

Proposition 2.7. Soit f : A → B un morphisme d’anneau. Alors ker f est un idéal
dans A, et imf ∼= A/ ker f .

Démonstration. C’est un sous-groupe additif. Si a ∈ ker f ou a′ ∈ ker f , alors f(a) = 0
ou f(b) = 0, d’où f(ab) = f(a)f(b) = 0. Ainsi ker f est clos par multiplication à gauche
et à droit par des éléments de A, et en particulier clos par multiplication. Ainsi ker f
est un idéal.
L’application a + ker f 7→ f(a) est une bijection de groupes additifs entre A/ ker f et
imf . Elle préserve la multiplication. C’est donc un isomorphisme d’anneaux.
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Remarque 2.8. Si A est unitaire, alors imf est un sous-anneau unitaire de B, mais
son unité f(1A) n’est pas forcément unité de B.

Théorème 2.9. Soient A et B deux anneaux, f : A → B un morphisme d’anneaux,
et I E A un idéal de A. Soit π : A → A/I la projection canonique. Alors il y a un
morphisme g : A/I → B tel que f = g ◦ π si et seulement si I ≤ ker f .

Démonstration. S’il y a g : A/I → B avec f = g ◦ π et a ∈ I, alors π(a) = 0I , et
g(0I) = 0B. Donc f(a) = (g ◦ π)(a) = 0B et a ∈ ker f . Ainsi I ≤ ker f .
Réciproquement, soit I ≤ ker f . Pour a + I ∈ A/I on pose g(a + I) = f(a) ∈ B. On
vérifie que g est bien défini : Si a′ ∈ A avec a+ I = a′ + I, alors a− a′ ∈ I ≤ ker f , et

f(a) = f(a− a′ + a′) = f(a− a′) + f(a′) = 0 + f(a′) = f(a′).

Donc g : A/I → B est bien défini, et pour tout a ∈ A on a bien (g ◦π)(a) = g(a+ I) =
f(a), d’où f = g ◦ π.

Proposition 2.10. Soit I E A. Alors π : a 7→ a + I induit une bijection entre les
idéaux de A qui contiennent I et les idéaux de A/I.

Démonstration. Soit I ≤ J E A. Alors f [J ] = J/I est un sous-groupe additif de A qui
est clos par multiplication par des éléments de A/I, puisque (a+ I)J = aJ = J . Donc
π[J ] est un idéal de A/I.
Réciproquement, si J̄ est un idéal de A/I, soit J = π−1[J̄ ] son image réciproque. C’est
un groupe additif, et pour tout a ∈ A on a π[aJ ] = π(a)π[J ] = π(a)J̄ = J̄ , d’où
aJ ≤ J . Ainsi J est un idéal de A.
Enfin, π induit une bijection entre les sous-groupes additifs de A qui contiennent I et
les sous-groupes additifs de A/I, qui se restreint en une bijection entre ceux qui sont
des idéaux.

3 Ideaux

Soit X un ensemble. Une famille (Yi : i ∈ I) de parties de X est une chaîne si pour
tout i, j ∈ I on a Yi ⊆ Yj ou Yj ⊆ Yi.

Proposition 3.1. Soit A un anneau, et {Bi : i ∈ I} une famille non-vide de sous-
anneaux de A.

1. L’intersection
⋂

i∈I Bi est un sous-anneau de A.

2. Si tous les Bi sont des idéaux, alors
⋂

i∈I Bi est un idéal.

3. Si les {Bi : i ∈ I} forment une chaîne, la réunion
⋃

i∈I Bi est un sous-anneau
de A.

4. Si les {Bi : i ∈ I} forment une chaîne d’idéaux, la réunion
⋃

i∈I Bi est un idéal.
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Démonstration. 1. On a 0 ∈ Bi pour tout i ∈ I, d’où 0 ∈
⋂

i∈I Bi. Si b, b′ ∈
⋂

i∈I Bi,
alors b, b′ ∈ Bi pour tout i ∈ I ; puisque les Bi sont des sous-anneaux, on a
b − b′, bb′ ∈ Bi pour tout i ∈ I, et b − b′, bb′ ∈

⋂
i∈I Bi. Ainsi

⋂
i∈I Bi est un

sous-anneau.
2. Si les Bi sont des idéaux, alors pour tout b ∈

⋂
i∈I Bi et a ∈ A on a b ∈ Bi pour

tout i ∈ I, d’où ab ∈ Bi, et ab ∈
⋂

i∈I Bi. Ainsi
⋂

i∈I Bi est un idéal.
3. Puisque la chaîne n’est pas vide,

⋃
i∈I Bi 6= ∅. Si b, b′ ∈

⋃
i∈I Bi, alors il y a

i, j ∈ I avec b ∈ Bi et b′ ∈ Bj. On peut supposer que Bi ⊆ Bj. Alors b, b′ ∈ Bj,
et donc b− b′, bb′ ∈ Bj ⊆

⋃
i∈I Bi. Ainsi

⋃
i∈I Bi est un sous-anneau.

4. Si de plus tous les Bi sont des idéaux, alors pour tout b ∈
⋃

i∈I Bi et a ∈ A il y
a i ∈ I avec b ∈ Bi, d’où ab ∈ Bi et ab ∈

⋃
i∈I Bi. Ainsi

⋃
i∈I Bi est un idéal.

En particulier l’intersection de deux idéaux est un idéal.

Définition 3.2. Soit A un anneau, et I et J deux idéaux.
1. La somme de I et J est l’idéal I + J = {a+ b : a ∈ I, b ∈ J}.
2. Le produit de I et J est l’idéal IJ = 〈ab : a ∈ I, b ∈ J〉+.

On note que I + J = (I, J) est le plus petit idéal contenant I et J .

Remarque 3.3. Pour deux ensembles X, Y ⊆ A on avait défini XY comme l’ensemble
{xy : x ∈ X, y ∈ Y }. Pour deux idéaux I, J E A on prend l’idéal engendré.

Exemple 3.4. Si A = Z et n ∈ N, alors (n) = nZ. Si m ∈ N on a

(m,n) = (m) + (n) = mZ + nZ = (m ∧ n)Z,
(m) (n) = mZnZ = mnZ, et

(m) ∩ (n) = (m ∨ n)Z.

Définition 3.5. Soit A un anneau. Deux idéaux I et J sont étrangers (ou premiers
entre eux) si I + J = A.

Proposition 3.6. Soit A un anneau unitaire, et I, J deux idéaux étrangers. Alors
IJ = I ∩ J .

Démonstration. Puisque I et J sont des idéaux, on a IJ ≤ I et IJ ≤ J , d’où IJ ≤ I∩J .
Réciproquement, puisque A = I + J il y a i ∈ I et j ∈ J avec i+ j = 1. Soit a ∈ I ∩ J .
Alors a = (i+ j)a = ia+ ja ∈ IJ , d’où I ∩ J ≤ IJ et on a égalité.

Théorème 3.7 (Théorème des restes chinois). Soit A un anneau unitaire, et I1, . . . , In
des idéaux deux-à-deux étrangers. Alors le morphisme d’anneaux

ϕ : A/(I1 ∩ · · · ∩ In)→ A/I1 × · · ·A/In
x+ (I1 ∩ · · · ∩ In) 7→ (x+ I1, . . . , x+ In)

est un isomorphisme.

8



Démonstration. Par récurrence sur n, le cas n = 1 étant trivial. On suppose donc que
I1, . . . , In, J sont deux-à-deux étrangers, et que x + I 7→ (x + I1, . . . , x + In) est un
isomorphisme, où I = I1 ∩ · · · ∩ In. Puisque J est étranger à chaque Ik, il y a ik ∈ Ik
et jk ∈ J avec ik + jk = 1. Alors 1 =

∏n
k=1(ik + jk) ∈ i1i2 · · · in + J ⊆ I + J . Donc I et

J sont étrangers. On considère donc

A/(I1 ∩ · · · ∩ In ∩ J) = A/(I ∩ J)→ A/I × A/J → A/I1 × · · · × A/In × A/J ;

d’après l’hypothèse de récurrence il suffit de montrer que ϕ : A/(I ∩ J)→ A/I ×A/J
est un isomorphisme. On est donc réduit au cas n = 2.
Il est clair que le morphisme est injectif. On considère (x + I, y + J) ∈ A/I × A/J .
Soient i ∈ I et j ∈ J tels que i+ j = 1. On pose z = iy + jx. Alors

z + I = iy + jx+ I = ix+ jx+ I = (i+ j)x+ I = x+ I, et
z + J = iy + jx+ J = iy + jy + J = (i+ j)y + J = y + J.

Ceci montre la surjectivité.

On note que si z0 ∈ A est une solution particulière du système de congruences z ∈ ak+Ik
pour k = 1, . . . , n, alors l’ensemble des solutions est précisément z0 + (I1 ∩ · · · ∩ In).

Exemple 3.8. Soient n1, . . . , nk ∈ Z deux-à-deux premiers entre eux. Alors pour tout
a1, . . . , ak ∈ Z il y a x ∈ Z tel que x ≡ ai mod ni pour i = 1, . . . , k.

Démonstration. Si ni et nj sont premiers entre eux, d’après la relation de Bézout il y
a u, v ∈ Z avec niu+ njv = 1. Donc (ni) + (nj) = Z, et (ni) et (nj) sont étrangers. On
conclut avec le théorème des restes chinois.

4 Inversibilité, anneaux intègres
Définition 4.1. Soit A un anneau (commutatif). Un élément a ∈ A∗ est un diviseur
de zéro s’il y a b ∈ A∗ avec ab = 0. Dans ce cas, b est aussi un diviseur de zéro.
Un anneau sans diviseur de zéro est un anneau intègre. Attention : Parfois on demande
en plus que l’anneau soit unitaire !
Si A est unitaire, un élément a ∈ A est inversible s’il y a b ∈ A avec ab = 1.
L’ensemble des éléments inversibles est noté A×. C’est un groupe multiplicatif.
Un anneau commutatif non-trivial dont tous les éléments non-nuls sont inversibles est
un corps. Dans ce cas A× = A∗.

Remarque 4.2. Ne pas confondre A× et A∗ = A \ {0}.

Lemme 4.3. 1. Un élément inversible n’est pas diviseur de zéro. En particulier un
corps est intègre.

2. Si a n’est pas diviseur de zéro et ab = ac, alors b = c. En particulier un anneau
intègre a simplification multiplicative.
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3. Un anneau (commutatif) A est un corps ssi A∗ est un groupe.

Démonstration. 1. Si ab = 0 et a est inversible, alors b = a−1ab = a−10 = 0.
2. Si ab = ac alors a(b− c) = 0. Comme a n’est pas diviseur de zéro, b− c = 0 et
b = c.

3. Évident.

Lemme 4.4. Soit A un anneau intègre. Alors un ideal I est propre (c’est-à-dire I 6= A)
ssi A ne contient pas d’élément inversible. En particulier un corps n’a pas d’idéal propre
non-trivial.

Démonstration. Si I = A alors 1 ∈ I et I contient un élément inversible.
Réciproquement, si a ∈ I est inversible, alors 1 = a−1a ∈ I et A = A 1 ⊆ I.

Définition 4.5. Soit A un anneau, et I E A un idéal.
— I est premier si pour tous a, b ∈ A, si ab ∈ I alors a ∈ I ou b ∈ I.
— I est maximal si I est propre et il n’y a pas d’idéal J avec I < J < A.

Théorème 4.6. Soit A un anneau, et I E A un idéal.
1. I est premier si et seulement si A/I est intègre.
2. Si A/I est un corps, alors I est maximal.
3. Si A est unitaire et I maximal, alors A/I est un corps.

Démonstration. 1. Soit I premier, et a, a′ ∈ A avec (a + I)(a′ + I) = 0 + I. Alors
aa′ + I = (a + I)(a′ + I) = I et aa′ ∈ I. Puisque I est premier, soit a ∈ I et
a+ I = 0 + I, soit a′ ∈ I et a′ + I = 0 + I. Donc A/I est intègre.
Réciproquement, soit A/I intègre et a, a′ ∈ A avec aa′ ∈ I. Donc (a+I)(a′+I) =
0 + I ; puisque A/I est intègre, soit a + I = 0 + I et a ∈ I, soit a′ + I = 0 + I
et a′ ∈ I. Ainsi I est premier.

2. Soit A/I un corps. Alors A/I n’a pas d’idéal non-trivial propre. D’après la
proposition 2.10 il n’y a pas d’idéal strictement entre I et A. Donc I est maximal.
De plus A/I contient au moins deux éléments, et I est propre.

3. Soit A unitaire et I maximal. Soit a+ I ∈ (A/I)∗, donc a /∈ I. Par maximalité,
I < (a, I) = Aa + I = A. Il y a donc a′ ∈ A et c ∈ I avec a′a + c = 1. Donc
(a′ + I)(a+ I) = 1 + I et a+ I est inversible dans A/I.

Remarque 4.7 (Hors programme). En fait, pour le dernier point il suffit de supposer
que A/I est non-nul : Soit I maximal et A/I non-nul. Soit a+ I ∈ (A/I)∗. Alors a /∈ I,
et I < (a, I) d’où A = (a, I) = (a) + I = Aa+ Za+ I par maximalité.
Si Aa ≤ I, alors Za+ I = A. Or, (za+ I)(z′a+ I) = zz′aa+ I ⊆ Aa+ I = I pour tout
z, z′ ∈ Z, et A/I est un anneau nul, une contradiction. Donc Aa 6≤ I et Aa + I = A.
Alors il y a c ∈ I et e ∈ A avec ea+ c = a. Ainsi

(e+ I)(a+ I) = ea+ I = a− c+ I = a+ I.
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De même, pour tout a′ ∈ A il y a c′ ∈ I et b′ ∈ A avec b′a+c′ = a′, d’où (b′+I)(a+I) =
b′a+ I = a′ − c′ + I = a′ + I. Donc

(e+ I)(a′ + I) = (e+ I)(b′ + I)(a+ I) = (b′ + I)(a+ I) = a′ + I.

Ainsi A/I est unitaire, avec unité e+ I. Alors il y a c′′ ∈ I et a′′ ∈ A avec a′′a+ c′′ = e,
et (a′′ + I)(a+ I) = a′′a+ I = e− c′′ + I = e+ I. Donc a+ I est inversible dans A/I,
et A/I est un corps.

Remarque 4.8. Le groupe additif Z/pZ pour p premier considéré comme anneau
nul n’est pas un corps, mais I = (0) est le seul sous-groupe propre et donc un ideal
maximal, ce qui montre que la condition A/I non-nul est nécessaire.

Corollaire 4.9. Si A est unitaire, tout idéal maximal est premier.

Démonstration. Si I est maximal, A/I est un corps, donc intègre, et I est premier.

Théorème 4.10. Soit A un anneau unitaire et I / A un idéal propre. Alors I est
contenu dans un idéal maximal.

Avant la démonstration il nous faut introduire un peu de terminologie.

Définition 4.11. Soit X un ensemble. Une partie F ⊆ P(X) est inductive si toute
chaine (Yi : i ∈ I) dans F a un majorant dans F , c’est à dire un élément Y ∈ F tel
que Yi ⊆ Y pour tout i ∈ I.

Fait 4.12 (Lemme de Zorn). Si F est inductive, alors F à des éléments maximaux.

Ce fait est une des 1001 versions équivalentes de l’axiome du choix. Sauf dans des cas
particuliers (où l’on n’en a pas vraiment besoin), il est donc impossible d’obtenir un
tel élément maximal explicitement.

Démonstration du Théorème 4.10. Soit X = A et F = {J / A : I ≤ J} l’ensemble des
idéaux propres de A contenant I.
Soit (Js : s ∈ S) une chaîne non-vide dans F . Alors

⋃
s∈S Js est un idéal dans A

contenant I majorant la chaîne ; puisque 1 /∈ Js pour tout s ∈ S on a 1 /∈
⋃

s∈S Js et⋃
s∈S Js ∈ F . Ainsi F est inductif et possède un élément M maximal d’après le lemme

de Zorn. Alors M es un idéal maximal contenant I.

L’exemple suivant montre que la condition que A soit unitaire est nécessaire.

Exemple 4.13. Soit A l’anneau des polynômes sur Z sans terme constant en variables
X,X1/2, X1/4 . . . , X1/2n , . . ., augmenté de 0, avec bien sur

(
X1/2n+1)2

= X1/2n pour
tout n ∈ N. On note que pour tout P ∈ A et n ∈ N suffisamment grand il y a Q ∈ A
avec P = QX1/2n .
Soit In = (X1/2n). Puisque X1/2k divise X1/2n pour k > n, on a (X1/2n) ≤ (X1/2k) et
les (In : n ∈ N) forment une chaîne croissante. Or, A =

⋃
n∈N In. Si I0 ≤ I / A avec I

maximal, alors A/I est non-nul, puisque tout P ∈ A \ I s’écrit comme P = QX1/2n .
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Ainsi A/I est un corps d’après le théorème 4.6. Puisque I < A et
⋃

n∈N In = A il y a
n ∈ N minimal tel que In 6≤ I ; on note que n > 0. Soit P ∈ In \I. Alors P 2 ∈ In−1 ≤ I.
Comme I est maximal, il est premier, et P ∈ I, une contradiction. Donc I0 n’est pas
contenu dans un idéal maximal.

Exemple 4.14. Soit n ∈ N. Alors nZ est un idéal dans Z, et Z/nZ est un anneau
commutatif unitaire. Si n = 0 on a nZ = {0} et Z/nZ = Z. Si n = 1 on a nZ = Z et
Z/nZ ∼= {0}, l’anneau trivial. On supposera donc n ≥ 2.

Lemme 4.15. Z/nZ est intègre si et seulement si Z/nZ est un corps si et seulement
si n est premier, pour n ≥ 2.

Démonstration. Supposons d’abord n = k` composé, avec 1 < k, ` < n. Alors k+nZ 6=
0 + nZ, et `+ nZ 6= 0 + nZ, mais

(k + nZ) (`+ nZ) = kl + nZ = n+ nZ = 0 + nZ.

Donc Z/nZ n’est pas intègre.
Réciproquement, supposons n premier. Alors pour tout k ∈ Z soit n divise k et k+nZ =
0 +nZ, soit k et n sont premiers entre eux. Dans ce cas, d’après le théorème de Bézout
il y a des entiers relatifs s, t ∈ Z tels que sk + tn = pgcd(k, n) = 1. Alors

(s+ nZ) (k + nZ) = (sk + nZ) = 1− kn+ nZ = 1 + nZ.

Ainsi tout k + nZ non-nul est inversible, et Z/nZ est un corps.

C’est un cas particulier d’un théorème plus général.

Proposition 4.16. Un anneau intègre fini est un corps.

Démonstration. Soit a ∈ A∗. Alors l’application λa : x 7→ ax est injective : Si ax = ax′,
alors d’après lemme 4.3.2 on a x = x′. Or, A est fini, et toute application A → A
injective est surjective. Par surjectivité de λa il y a un élément e ∈ A avec ae = a. Si
b ∈ A est quelconque, alors ab = aeb, d’où b = eb encore par lemme 4.3.2. Ainsi e est
une unité multiplicative.
Encore par surjectivité de λa il y a a′ ∈ A avec aa′ = e. Donc a possède un inverse
multiplicatif a−1 = a′, et A est un corps.

En fait, le Théorème de Wedderburn asserte qu’on a pas besoin de supposer la com-
mutativité : Tout anneau fini sans diviseur de zéro est un corps.

On va maintenant généraliser la construction de Q à partir de Z à un anneau intègre
quelconque.

Théorème 4.17 (Corps des fractions). Soit A un anneau intègre. Alors il y a un unique
(à isomorphisme près) plus petit corps K contenant A. Tout élément de K s’écrit de
la forme ab−1 avec a, b ∈ A (inverse et produit calculé dans K). C’est le corps des
fractions de A. Si f : A → L est un morphisme d’anneaux injectif avec L un corps, il
se prolonge en morphisme f̄ : K → L.

12



Démonstration. On imagine que A se plonge dans un corps K. Alors K contient tous
les éléments de la forme ab−1 avec a ∈ A et b ∈ A∗. On note que la collection de tels
quotients est clos par addition, soustraction, multiplication et réciproque, c’est donc
un sous-corps. Par minimalité K = {ab−1 : a ∈ A, b ∈ A∗}. On va coder l’élément ab−1
par la paire (a, b). Or, ce codage n’est pas unique ; on appellera paires qui donnent le
même quotient ∼-équivalents : (a, b) ∼ (a′b′)⇔ ab−1 = a′b′−1 ⇔ ab′ = a′b.
Pour ce faire, on n’a pas besoin de l’existence à priori de K — on le construira. Sur
A × A∗ on définit une relation d’équivalence par (a, b) ∼ (a′, b′) si et seulement si
ab′ = a′b. On note que (a, b) ∼ (ac, bc) pour c 6= 0, et que ∼ est réflexif et symétrique.
On vérifie la transitivité : si (a, b) ∼ (a′, b′) ∼ (a′′, b′′), alors ab′ = a′b et a′b′′ = a′′b′,
d’où ab′b′′ = a′bb′′ = a′′bb′ et ab′′ = a′′b par simplification, ce qui donne (a, b) ∼ (a′′, b′′).
Ainsi ∼ est une relation d’équivalence, dont on note la classe de (a, b) par [a, b].
On pose K = (A×A∗)/∼, et définit une addition ⊕ et une multiplication ⊗ sur K par
les formules qu’on connaît des quotients ab−1 :

[a, b]⊕ [a′, b′] = [ab′ + a′b, bb′] et [a, b]⊗ [a′, b′] = [aa′, bb′].

Il faut vérifier que la somme et le produit ne dépendent pas du choix des représentants.
Par symétrie il suffit de vérifier sur la gauche. Soit donc [a, b] = [a′′, b′′], et donc ab′′ =
a′′b. Alors [a′′, b′′]⊕ [a′, b′] = [a′′b′ + a′b′′, b′′b′] et [a′′, b′′]⊗ [a′, b′] = [a′′a′, b′′b′]. Or,

[ab′ + a′b, bb′] = [ab′b′′ + a′bb′′, bb′b′′] = [a′′b′b+ a′bb′′, bb′b′′] = [a′′b′ + a′b′′, b′′b′] et
[aa′, bb′] = [aa′b′′, bb′b′′] = [a′′a′b, bb′b′′] = [a′′a′, b′′b′].

Donc ⊕ et ⊗ sont bien définis.
On fixe c ∈ A∗ et pose 0 = [0, c] et 1 = [c, c]. Ces classes ne dépendent pas du choix
de c. Pour [a, b] ∈ K on pose −[a, b] = [−a, b], et si a 6= 0 on pose [a, b]−1 = [b, a]. On
vérifie facilement que ceci ne dépend pas du choix des représentants. Alors

[a, b]⊕ [0, c] = [ac+ 0b, bc] = [a, b] et [a, b]⊗ [c, c] = [ac, bc] = [a, b],

et donc
[a, b]⊕ (−[a, b]) = [a, b]⊕ [−a, b] = [ab− ab, bb] = [0, bb] = 0, et

[a, b]⊗ [a, b]−1 = [a, b]⊗ [b, a] = [ab, ab] = 1.

Il est évident de la définition que ⊕ et ⊗ sont commutatifs. On vérifie l’associativité :

([a, b]⊕ [a′, b′])⊕ [a′′, b′′] = [ab′ + a′b, bb′]⊕ [a′′, b′′] = [ab′b′′ + a′bb′′ + a′′bb′, bb′b′′]

= [a, b]⊕ [a′b′′ + a′′b′, b′b′′] = [a, b]⊕ ([a′, b′]⊕ [a′′, b′′]), et
([a, b]⊗ [a′, b′])⊗ [a′′, b′′] = [aa′, bb′]⊗ [[a′′, b′′] = [aa′a′′, bb′b′′] = [a, b]⊗ [a′a′′, b′b′′]

= [a, b]⊗ ([a′, b′]⊗ [a′′, b′′])

et la distributivité :
([a, b] + [a′, b′])⊗ [a′′, b′′] = [ab′ + a′b, bb′]⊗ [a′′, b′′] = [aa′′b′ + a′a′′b, bb′b′′]

= [aa′′b′b′′ + a′a′′bb′′, bb′b′′b′′] = [aa′′, bb′′]⊕ [a′a′′, b′b′′]

= [a, b]⊗ [a′′, b′′]⊕ [a′, b′]⊗ [a′′, b′′].
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Ainsi (K, 0, 1,⊕,⊗) est bien un corps.
On considère f : A→ K défini par a 7→ [ac, c] (on note que f(a) ne dépend pas de c).
Si f(a) = f(a′) alors [ac, c] = [a′c, c], soit ac2 = a′c2 et a = a′ ; ainsi f est injectif. On
a f(0) = [0c, c] = 0, f(1) = [1c, c] = 1 (si A est unitaire), et f préserve l’addition et la
multiplication :

f(a+ b) = [(a+ b)c, c] = [acc+ bcc, cc] = [ac, c] + [bc, c] = f(a)⊕ f(b), et
f(ab) = [abc, c] = [acbc, cc] = [ac, c]⊗ [bc, c] = f(a)⊗ f(b).

Ainsi f plonge A dans K, et tout élément [a, b] ∈ K est de la forme

f(a)⊗ f(b)−1 = [ac, c]⊗ [bc, c]−1 = [ac, c][c, bc] = [ac2, bc2] = [a, b].

On identifie donc A avec son image dans K.
Si L est un autre corps et g : A → L est un plongement, on prolonge g sur K par
g : [a, b] 7→ g(a)g(b)−1 ; on vérifie que ḡ ne dépend pas des choix des représentants,
que ḡ(0) = 0 et que ḡ prolonge g et préserve l’addition et la multiplication. Ainsi ḡ est
un homomorphisme de K dans L. Or, ker ḡ est un idéal de K qui ne peut pas être K
entier puisque ker ḡ∩A = {0}. Mais un idéal d’un corps est soit (0) soit le corps entier.
Ainsi ker ḡ = (0) et ḡ est injectif, ce qui montre que K est minimal et unique.
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