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FICHE TD 3 � Séries de Fourier et EDP. Séances 5-6.

Exercice 1. Soit f : R → R la fonction 2π-périodique dé�nie par

f(x) =

{
1 pour x ∈ [0, π] ,
0 pour x ∈]π, 2π[.

1. Dessiner le graphe de f sur [−2π, 2π].

2. Calculer les coe�cients de Fourier an et bn de f .

3. En déduire la série de Fourier de f qu'on notera Sf .

4. Pour quelles valeurs de x a-t-on Sf(x) = f(x) ?

5. En déduire, en fonction de x ∈ R, la valeur de la somme

+∞∑
n=0

sin((2n+ 1)x)

2n+ 1
.

Exercice 2. Soit f : R → R la fonction 2π-périodique dé�nie sur [−π, π] par f(x) = x2.

1. Dessiner le graphe de f sur l'intervalle [−3π, 3π].

2. Calculer les coe�cients de Fourier de f .

3. Pour quelles valeurs de x ∈ R, a-t-on Sf(x) = f(x) ?

4. Calculer les sommes des séries numériques suivantes (a)
+∞∑
n=1

(−1)n

n2
, (b)

+∞∑
n=1

1

n4
.

Exercice 3. Soit f : R → R la fonction 2π-périodique, paire et telle que

f(x) = 2x− π sur [0, π].

1. Dessiner le graphe de f sur [−3π, 3π] et exprimer f(x) sur [π, 2π].

2. Déterminer la série de Fourier de f . On note Sf(x) la somme de la série.

3. Pour quelles valeurs de x a-t-on Sf(x) = f(x) ?

4. En déduire la valeur de la somme ∑
p⩾0

1

(2p+ 1)2
.

5. En utilisant la formule de Parseval, calculer∑
p⩾0

1

(2p+ 1)4
.

Exercice 4. Soit f : R3 → R une application de classe C1. On pose F (x, y, z) = f(x− y, y − z, z − x).

Montrer que F satisfait l'équation de transport
∂F

∂x
+

∂F

∂y
+

∂F

∂z
= 0 sur R3.

Exercice 5. Soit f une fonction de classe C2 sur R2. Montrer que f est solution de l'équation des ondes
(appelée encore équation des cordes vibrantes)

∂2f

∂x2
=

∂2f

∂y2
sur R2 ,
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si et seulement s'il existe des fonctions A et B de classe C2 sur R telles que

∀(x, y) ∈ R2 , f(x, y) = A

(
x− y

2

)
+B

(
x+ y

2

)
.

Indication : on pourra utiliser le changement de variables u = x+y
2 et v = x−y

2 et calculer
∂2

∂u∂v
f(u+v, u−v).

Exercice 6. En e�ectuant le changement de variables u = x + y, v = x − y, déterminer les fonctions
f ∈ C1(R2,R) véri�ant l'équation de transport

∂f

∂x
− ∂f

∂y
= 0 sur R2.

Exercices supplémentaires

Exercice 7. Soit f : R → R la fonction 2π-périodique et véri�ant

f(x) = x sur [−π, π[.

1. Dessiner le graphe de f sur l'intervalle [−3π, 3π].

2. Calculer les coe�cients de Fourier an et bn de f .

3. En déduire la série de Fourier de f qu'on notera Sf .

4. Pour quelles valeurs de x a-t-on Sf(x) = f(x) ?

5. En déduire la valeur de la somme ∑
p⩾0

(−1)p

2p+ 1
.

Exercice 8. Soit α ∈]0, π[ et f : R → R la fonction 2π-périodique dé�nie sur [−π, π] par

f(x) =

{
1 si x ∈ [−α, α]
0 sinon.

1. Dessiner le graphe f sur [−2π, 2π].

2. Calculer les coe�cients de Fourier an et bn de f .

3. En déduire la série de Fourier de f .

4. En déduire la somme de la série
+∞∑
n=1

sin(nα)2

n2
.

Exercice 9. Soit f : R → R la fonction 2π-périodique, impaire et telle que

f(t) =
π − t

2
sur ]0, π].

1. Dessiner le graphe de f sur une période.

2. Étudier la convergence de la série de Fourier de f .

3. Calculer la série de Fourier de f (avec les fonctions sin et cos).

4. En déduire la valeur des sommes suivantes :∑
n⩾1

sinn

n
et

∑
n⩾1

1

n2
.

Exercice 10. Soit f : R → R la fonction 2π-périodique dé�nie sur [−π, π] par f(x) = 1− x2

π2
.
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1. Dessiner le graphe de f sur l'intervalle [−3π, 3π].

2. Calculer les coe�cients de Fourier de f .

3. Pour quelles valeurs de x ∈ R, a-t-on Sf(x) = f(x) ?

4. Calculer les sommes des séries numériques suivantes :

(a)

+∞∑
n=1

1

n2
, (b)

+∞∑
n=1

(−1)n

n2
, (c)

+∞∑
n=1

1

n4
.

Exercice 11. Soit f : R → R la fonction 2π-périodique dé�nie sur [−π, π[ par f(x) = ch x.

1. Dessiner le graphe de f sur l'intervalle [−3π, 3π].

2. Calculer les coe�cients de Fourier de f .

3. Pour quelles valeurs de x ∈ R, a-t-on Sf(x) = f(x) ?

4. Calculer les sommes des séries numériques suivantes :

(a)

+∞∑
n=1

1

n2 + 1
, (b)

+∞∑
n=1

(−1)n

n2 + 1
.

Exercice 12. Soit f : R → R la fonction 4π-périodique et paire dé�nie sur [0, 2π] par f(x) = π − x.

1. Dessiner le graphe de f sur l'intervalle [−6π, 6π].

2. Calculer les coe�cients de Fourier de f .

3. Pour quelles valeurs de x ∈ R, a-t-on

π − x =
8

π

+∞∑
n=0

cos
((
n+ 1

2

)
x
)

(2n+ 1)2
?

Exercice 13. Soit f : [0, π] → R la fonction dé�nie par f(x) = x(π − x).

1. Déterminer une suite réelle (an)n∈N telle que pour tout x ∈ [0, π] : f(x) =
∑+∞

n=0 an cos(nx).

2. Déterminer une suite réelle (bn)n∈N telle que pour tout x ∈ [0, π] : f(x) =
∑+∞

n=0 bn sin(nx).

3. Calculer les sommes des séries numériques suivantes :

(a)

+∞∑
n=1

1

n2
, (b)

+∞∑
n=1

1

n4
, (c)

+∞∑
n=1

1

n6
.

Exercice 14. On considère l'équation di�érentielle

(E) y′′ + y = f(x)

où f est la fonction 2π-périodique et paire telle que

f(x) = 2x− π +
8

π
cos(x) sur [0, π] .

1. Rappeler la série de Fourier de f à partir d'un exo ci-dessus (modulo un mode de Fourier supplémen-
taire).

2. Calculer une solution particulière de (E) développable en série de Fourier.

3. En déduire la solution générale de (E).

Exercice 15. Soit f : R → R la fonction 2π-périodique dé�nie sur [−π, π[ par f(x) = x.
On considère l'équation di�érentielle

(E) y′′ − y = f
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1. Rappeler à partir d'un exo ci-dessus la série de Fourier de f .

2. On suppose que y0 est une solution particulière de (E) développable en série de Fourier : trouver sa
série de Fourier.

3. On rappelle de la �che précédente que la fonction 2π-périodique dé�nie sur [−π, π[ par

g(x) = ch (x)− sh (π)

π

admet pour série de Fourier g(x) =
2sh (π)

π

+∞∑
n=1

(−1)n

1 + n2
cos(nx). Trouver un développement en série de

Fourier de la primitive G véri�ant G(0) = 0.

4. En déduire une formule pour y0. Véri�er que y0 est C2 sur ]−π, π[ et solution de (E) sur cet intervalle.

5. En déduire la solution générale de (E) sur ]− π, π[.

Exercice 16. On considère l'équation de Laplace pour (x, y) ∈]0,+∞[×R

∂2u

∂x2
(x, y) +

∂2u

∂y2
(x, y) = 0 (EL)

1. Soit n ∈ N. Montrer que les fonctions un(x, y) = e−nx cos(ny) et vn = e−nx sin(ny) sont solutions de
(EL) de période 2π en y.

2. Soit

u(x, y) =
a0
2

+

+∞∑
n=1

e−nx
(
an cos(ny) + bn sin(ny)

)
.

Trouver les coe�cients an et bn pour que u(x, y) véri�e la condition de bord u(0, y) = y, ∀y ∈]− π, π[.

3. Montrer que u est solution 2π-périodique en y de (EL) sur ]0,+∞[×R.

Exercice 17. On considère l'équation de la chaleur

(EC)


∂u

∂t
− ∂2u

∂x2
= 0, ∀x ∈]0, L[, ∀t > 0 (1)

u(x, 0) = u0(x), ∀x ∈ [0, L], (2)
u(0, t) = u(L, t) = 0, ∀t ≥ 0 (3)

qui modélise le problème suivant : une barre métallique de longueur L, représentée par le segment [0, L],
dont la température à l'instant t au point x ∈ [0, L] est donnée par u(x, t). On cherche à déterminer u en
connaissant la condition initiale (2) et les conditions aux bords (3).

On pose D =]0, L[×]0,+∞[ et on suppose que u0 est continue, C1 par morceaux sur [0, L] et véri�e les
conditions aux bords u0(0) = u0(L) = 0. On va montrer que (EC) admet une solution u, en particulier assez
régulière pour satisfaire (1) au sens classique, qui est de plus continue sur D := [0, L]× [0,+∞[.

1. Montrer que si une fonction u régulière et solution de (1) s'écrit sous la forme u(x, t) = F (x)G(t), où
F et G ne s'annulent pas sur ]0, L[ ou ]0,+∞[ (dans cette question), alors F et G véri�ent chacune
une équation di�érentielle linéaire qu'on déterminera.

2. Supposant u non identiquement nulle sur D, résoudre ces équations di�érentielles en tenant compte
des conditions aux bords (3).

Soit ū0 la fonction impaire et 2L-périodique qui coïncide avec u0 sur [0, L].

3. Justi�er l'existence et l'unicité d'une suite (bn)n∈N⋆ telle que ū0(x) =
∑+∞

n=1 bn sin
(
nπ
L x

)
pour tout

x ∈ R.

4



4. En déduire que toute fonction de la forme

(4) u(x, t) =
∑
n≥1

bn sin
(nπ
L

x
)
e−

n2π2

L2 t

est une solution de (1) et (3).

5. Montrer pour conclure que la fonction u ainsi dé�nie satisfait (2) et est bien continue sur D̄.

6. On montre dans cette question que la répartition de température tend vers l'état d'équilibre que
constitue ici la fonction nulle sur [0, L]. Plus précisément, si ft : x 7→ u(x, t) avec u toujours dé�nie en
(4), montrer que la famille de fonctions (ft)t≥0 tend vers 0 uniformément sur [0, L] quand t → +∞.

Exercice 18. On considère l'équation di�érentielle

(E) y′′ + y = | cos(x)|

Soit f : R → R donnée par f(x) = | cos(x)|.
1. Dessiner le graphe de f sur l'intervalle [−2π, 2π]. Quelle est la plus petite période de f ?

2. Déterminer la série de Fourier de f .

3. Montrer que pour tout x ∈ R, Sf(x) = f(x). A-t-on convergence uniforme ?

4. Calculer une solution particulière de (E) développable en série de Fourier.

5. En déduire la solution générale de (E).

Exercice 19. Soit α ∈ R \ Z et soit f : R → R la fonction 2π-périodique dé�nie sur [−π, π] par f(x) =
cos(αx).

1. Dessiner le graphe de f sur l'intervalle [−2π, 2π].

2. Calculer les coe�cients de Fourier de f .

3. Déterminer la série de Fourier de f . Expliciter l'écriture complexe.

4. Montrer que pour tout x ∈ R, Sf(x) = f(x).

5. Calculer la somme
+∞∑
n=1

(−1)n

α2 − n2
.

Exercice 20. Soit f : R → R la fonction 2π-périodique dé�nie sur [−π, π] par f(x) = x sin(x2 ) + 2 cos(x2 ).

1. Dessiner le graphe de f sur l'intervalle [−2π, 2π].

2. Calculer les coe�cients de Fourier de f .

3. Déterminer la série de Fourier de f .

4. Pour quelles valeurs de x ∈ R, a-t-on Sf(x) = f(x) ?

5. Calculer la somme
+∞∑
n=1

(−1)n−1

(4n2 − 1)2
.

Exercice 21. Montrer que pour tout x ∈ [0, 2π] on a
x2

2
= πx− π2

3
+ 2

+∞∑
n=1

cos(nx)

n2
.

En déduire les valeurs des sommes

(1)

+∞∑
n=1

1

n2
, (2)

+∞∑
n=1

(−1)n

n2
.

Exercice 22. Soit f : R → R la fonction 2π-périodique et impaire dé�nie sur ]0, π] par f(x) = π−x
2 .

1. Dessiner le graphe de f sur l'intervalle [−2π, 2π].

2. Calculer les coe�cients de Fourier de f .
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3. Déterminer la série de Fourier de f .

4. Pour quelles valeurs de x ∈ R, a-t-on Sf(x) = f(x) ? A-t-on convergence uniforme ?

On considère l'équation di�érentielle

(E) y′′ + 2y = f(x) .

On suppose que (E) admet une solution particulière y0 impaire, 2π-périodique et développable en série de

Fourier : y0(x) =
+∞∑
n=1

αn sin(nx).

5. Montrer que pour tout n ∈ N∗, on a αn =
1

n(2− n2)
.

6. En déduire la solution générale de (E).

7. Exprimer l'énergie totale du signal représenté par y0 E =
1

2π

∫ 2π

0

y0(x)
2 dx comme la somme d'une

série numérique.

Exercice 23. Soient f : R2 → R de classe C1 et g : R → R dé�nie par g(x) = f
(
ex sinx, ln(1 + x2)

)
.

Montrer que g est dérivable sur R et calculer sa dérivée en fonction des dérivées partielles de f .

Exercice 24. On note D = {(x, y) ∈ R2|x > 0}. On considère φ : D → D dé�nie par

φ(x, y) = (u, v), avec u = x, v =
y

x
.

1. Montrer que la fonction φ est bijective et de classe C1 de D sur D ainsi que sa fonction réciproque.
2. A l'aide du changement de variables φ, résoudre l'équation aux dérivées partielles

x2 ∂f

∂x
(x, y) + xy

∂f

∂y
(x, y) = y.

3. Quelle est la solution de l'équation qui véri�e

f(1, 0) = 0,
∂f

∂y
(1, y) = sin(y) pour tout y ∈ R?

Exercice 25. Résoudre en utilisant le changement de variable x = u, y = uv l'Équation aux Dérivées
Partielles (ÉDP) suivante :

x2 ∂
2f

∂x2
+ 2xy

∂2f

∂x∂y
+ y2

∂2f

∂y2
= 0

sur le demi-plan D =
{
(x, y) ∈ R2 : x > 0

}
.

Exercice 26. On considère l'équation aux dérivées partielles

(E)
∂2f

∂x2
(x, y)− ∂2f

∂y2
(x, y) = 4y

1. En utilisant le changement de variables u = x + y, v = x − y, trouver les fonctions f : R2 → R de
classe C2 sur R2 et solutions de l'équation (E).

2. Parmi les solutions trouvées en 1) quelle est celle qui véri�e les conditions supplémentaires

∀x ∈ R, f(x, x) = x2 et f(x,−x) = x3.

Exercice 27. On cherche les fonctions f : R2 → R telles que :

∂f

∂u
(u, v) + 2u

∂f

∂v
(u, v) = 0 pour tout (u, v) ∈ R2. (1)

Soit ϕ : R2 → R2 l'application dé�nie par ϕ(x, y) = (x, y + x2).
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1. En calculant l'application réciproque, montrer que ϕ est bijective. Véri�er que ϕ et ϕ−1 sont de classe
C1.

2. Soit f : R2 → R une fonction de classe C1. Posons g = f ◦ ϕ.
(a) Montrer que g est de classe C1.

(b) Montrer que f est solution de (1) si et seulement si ∂g
∂x = 0.

3. Soit f : R2 → R une fonction de classe C1. Montrer que f véri�e (1) si et seulement s'il existe une
fonction h : R → R de classe C1 telle que f(u, v) = h(v − u2) pour tout (u, v) ∈ R2.

Exercice 28. Soit D = {(x, y) ∈ R2, x > 0}. On cherche les fonctions f ∈ C1(D,R) qui véri�ent

(E) x
∂f

∂x
+ y

∂f

∂y
= 0 ∀(x, y) ∈ D.

1. Véri�er que φ(x, y) = y/x est solution de (E).

2. Soit g ∈ C1(R,R). Montrer que g ◦ φ est solution de (E).

3. Soit f une solution de (E). Montrer que f(u, uv) ne dépend que de v.

4. Donner l'ensemble des solutions de (E).

Exercice 29. On considère l'équation de la chaleur :

∂y

∂t
(x, t) = a2

∂2y

∂x2
(x, t), ∀x ∈]0, L[ et t > 0, (EC)

où a ∈ R et L > 0. On impose les conditions aux limites

y(0, t) = y(L, t) = 0, pour tout t ⩾ 0. (CL)

1. Soit n ∈ N. Montrer que la fonction y(x, t) = e−n2a2π2t/L2

sin
(nπx

L

)
est une solution de (EC) qui

satisfait les conditions aux limites (CL).

2. Soit

y(x, t) =

+∞∑
n=1

bne
−n2a2π2t/L2

sin
(nπx

L

)
.

Comment choisir les coe�cients bn pour que y(x, t) véri�e la condition initiale y(x, 0) = φ(x), où φ est
une fonction donnée sur ]0, L[ ?

3. Déterminer les coe�cients bn dans le cas φ(x) = sin(πxL ).
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