
Outils (plus ou moins) nouveaux essentiels discrets

1 Notations o et ∼ (révisions).

2 Nouvelle notation O.

3 Suites numériques (révisions).

4 Séries numériques (révisions).

5 Suites de fonctions.

6 Séries de fonctions.

7 Séries de Fourier : formules coe�cients.

8 Séries de Fourier : Sf (x) et f (x).

9 Séries de Fourier : Parseval-Bessel.
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Notations o et ∼

La notation f (x) = o(g(x)) au voisinage de a signi�e que f est égal au

produit de g et de quelque chose qui tend vers 0 quand x tend vers a.
En particulier, quand g ne s'annule pas près de a, cela revient à dire que

f /g tend vers 0 quand x tend vers a.

La notation f (x) ∼ g(x) au voisinage de a signi�e que f est égal au

produit de g et de quelque chose qui tend vers 1 quand x tend vers a.
En particulier, quand g ne s'annule pas près de a, cela revient à dire que

f /g tend vers 1 quand x tend vers a.

Exemples au voisinage de 0 :

x3 = o(x2); ln(x) = o(1/x); x4 = o(sin(x)− x).

Exemples au voisinage de +∞ :

ln(ln(x)) = o(ln(x)); ex = o(xex); sin(x) = o(x2).
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Nouvelle notation O

Ce n'est pas beaucoup plus dur que les autres...moralement cela veut dire

qu'au lieu de tendre vers 0 ou 1, f /g a juste besoin de rester borné.

La notation f (x) = O(g(x)) au voisinage de a signi�e que f est égal au

produit de g et de quelque chose qui reste borné quand x tend vers a.
En particulier, quand g ne s'annule pas près de a, cela revient à dire que

f /g reste borné quand x tend vers a. Mais personne ne dit que f /g a une

limite bornée !

Si f ∼ g ou f = o(g), alors f = O(g).

Exemples : x − sin(x) =0 O(x3); 1− cos(x) =0 O(x2); 10x2 =0 O(x)

x sin(x) = O(x) (au voisinage de n'importe quel point !)

ln(x) =1 O(x − 1); 2x2 + 1 =∞ O(x2).
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A quoi sert la nouvelle notation grand O ?

Le terme de domination est trompeur : par exemple x domine 2x (en 0

comme à l'in�ni).

L'intérêt est que les théorèmes de comparaison pour la convergence de

séries se réecrivent plus facilement. Plus concrètement, si un, vn ≥ 0∀n et

si un = O(vn) : ∑
vn converge ⇒

∑
un converge.

et réciproquement : ∑
un diverge ⇒

∑
vn diverge.

On peut procéder de même pour réecrire les résultats de comparaison vus

pour les intégrales.
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Suites numériques (révisions)

Pour les suites numériques, on regarde un pour n ≥ n0 quand n → +∞ et

on ne somme personne.

Exemples et méthodes à bien connaître :

Suite géométrique : zn converge si et seulement si |z | < 1 (vers 0)

ou z = 1 (vers 1).

Comparaison : si un tend vers 0 et vn = O(un), vn tend aussi vers 0.

Croissance comparée : plein d'exemples :

ln(n)√
n
;

en
2

n5
;

en + n3

en+1 − n
;

2n −
√
n

n + ln(n)
;

n2

n2 ln(n)
.

Mathématiques 4, printemps 2026 Essentiels du cours



Séries numériques (révisions)

Pour les séries numériques, on prend an pour n ≥ n0 et on regarde ce que

fait la somme Sn = an0 + · · ·+ an quand n → +∞. Exemples et

méthodes à bien connaître :

Série géométrique :
∑

an converge si et seulement si |a| < 1.

Série de Riemann :
∑

1/na converge si et seulement si a > 1.

Comparaison : si
∑

un converge absolument et vn = O(un), alors∑
vn converge absolument.

Les critères de d'Alembert et Cauchy (qui peuvent être réecrits

comme une comparaison asymptotique entre an et ln).

Exemples : ∑
sin(2−n);

∑ 3n

(n!)2
; ;

∑ (−1)n√
n

.
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Suites de fonctions

La convergence simple veut juste dire que pour chaque x �xé, la suite

numérique an(x) converge vers une limite a(x).
La convergence uniforme signi�e que a(x)− an(x) tend vers 0

uniformément en x . En d'autres mots, on peut trouver une suite

numérique Mn qui tend vers 0 telle que :

|a(x)− an(x)| ≤ Mn, ∀x , n.

C'est la condition pour les théorèmes de passage à la limite.

Exemples avec I =]0,+∞[ puis J = [1,+∞[ :

nx

nx + 1
;

xn

xn + 1
.
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Séries de fonctions

La, cela se complique. Il y a 3 notions de convergence, de la moins à la

plus forte :

La convergence simple signi�e juste que pour chaque x �xé, la série

numérique
∑

un(x) converge.

La convergence uniforme signi�e que, en plus de la convergence

simple, la suite de fonctions :

Rn(x) =
∑

k≥n+1

uk(x)

tend vers 0 uniformément en x (voir transparent précédent).

C'est la condition pour les théorèmes de passage à la limite.

La plus forte est la convergence normale. Maintenant, on demande

que la série numérique des normes :∑
∥un∥∞

converge. On rappelle que ∥u∥∞ := supx |u(x)|.
Exemples avec I =]0,+∞[ puis J = [1,+∞[ : 1

(x+1)n ;
1

n3x
.
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Séries de Fourier : formules coe�cients.

On suppose toujours que les fonctions étudiées sont T -périodiques et C 1

par morceaux.

an =
2

T

∫ T

0

f (x) cos

(
n
2π

T
x

)
dx ,

bn =
2

T

∫ T

0

f (x) sin

(
n
2π

T
x

)
dx .
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Séries de Fourier : Sf (x) et f (x).

On note la somme Sf :

Sf (x) =
a0
2

+
∑
n≥1

(an cos(nωx) + bn sin(nωx)).

Cette somme converge toujours simplement vers (f (x−) + f (x+))/2,
donc si f est continue vers f (x).
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Séries de Fourier : Parseval-Bessel.

On a :
a2
0

4
+

1

2

+∞∑
n=1

(a2n + b2n) =
1

T

∫ T

0

f (x)2 dx .

Avec le contenu du transparent d'avant, il s'agit de deux égalités qui

permettent de calculer la valeur exacte de beaucoup de sommes.
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Exemple Fourier

On prend f (x) = x sur [−π, π] et on la périodise.

Calculer les an et bn.

Ecrire la somme Sf (x). Quand est-elle égale à f (x) ?

Calculer la somme
∑

k≥0

(−1)k

2k+1
.

Calculer la somme
∑

k≥0

1

k2
.
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Outils (plus ou moins) nouveaux essentiels continus

1 Intégrales et convergence absolue (révisions).

2 Intégrales impropres.

3 Intégrales à paramètre.

4 Décomposition en éléments simples (révisions).

5 Transformée de Laplace.

6 Produit de convolution.

7 Transformée de Fourier.
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Intégrales et convergence absolue.

Ici et dans la suite, toutes les fonctions sont supposées continues par

morceaux. Lorsque nous intégrons une fonction f sur un intervalle I , on a

deux situations possibles :

Si
∫
I |f | est �nie (l'intégrale converge absolument, alors

∫
I f est bien

dé�nie.

Si
∫
I |f | est in�nie, il faut voir dans quelles situations nous pouvons

quand même donner un sens à
∫
I f .
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Intégrales impropres.

Regardons une fonction f dé�nie sur un intervalle ouvert I . Si f et I sont

bornés, tout va bien. Il y a deux types de soucis possibles :

f n'est pas bornée près de (au moins) une des bornes de l'intervalle.

L'intervalle lui-même n'est pas borné.

Dans les 2 cas, il faut approcher les bornes de I et regarder la limite (s'il y

a un souci à chaque borne, on coupe au milieu et on regarde chaque

limite séparément).

Exemples : ∫
1

0

ln(x + x2);

∫ +∞

0

sin(x)/x dx .
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Intégrales à paramètre.

On regarde :

f (p) :=

∫
I
F (p, x) dx .

Sous des hypothèses de domination sur F uniformément en p par une

fonction absolument intégrable sur I , on obtient que f est (au moins)

aussi régulière que F .
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Décomposition en éléments simples (révisions).

Formules longues à écrire, en particulier si décompositions réelles...mais

dans tous les cas, si le dénominateur est de degré n, alors il y a un

système avec n équations et n inconnues.

Exemples :
X

(X 2 − 1)2
;

X

X 2 + 2X + 2
.
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Transformée de Laplace.

Il s'agit d'une l'intégrale à paramètre :

L[f ](p) =

∫ +∞

0

e−px f (x)dx .

Les formulations sont un peu longues, mais en tout cas vous pouvez le

calculer pour p > A si f (x) = O(eAx) à l'in�ni.

Exemples pour trouver L[f ](p) :

f (x) = ex ; f (x) = cos(x).

Exemples pour trouver f(x) en partant d'une fraction rationnelle :

L[f ](p) =
2

p2 + 1
; L[f ](p) =

2

p2 − 1
.
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Transformée de Fourier.

Il s'agit encore une fois d'une intégrale à paramètre :

f̂ (p) =

∫ +∞

−∞
e−ipx f (x)dx .

Par rapport à la transformée de Laplace, il y a un i en plus et on a changé

les bornes.

C'est un objet compliqué, mais en tout cas vous pouvez le calculer si f
est absolument intégrable.

Exemples pour trouver f̂ (p) :

f (x) = e−|x |; f (x) = x1[−1,1](x).
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Merci de votre attention !
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