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Pour étudier un certain nombre de phénomènes, on peut utiliser une
version locale des lois de la physique : mécanique (classique, quantique,
relativiste), électromagnétisme, acoustique, thermodynamique etc.

Cette étude aboutit généralement à une modélisation mathématique des
différents phénomènes utilisant des équations différentielles ordinaires
(souvent raccourci en ÉDO ou EDO) ou des Équations aux Dérivées
Partielles (souvent raccourci en ÉDP ou EDP).
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Quelques rappels

Définition 1

Soit f : D ⊆ Rn → R une application. Si la limite

lim
h→0
h ̸=0

f (a1, · · · , ai−1, ai + h, ai+1, · · · , an)− f (a1, · · · , an)
h

,

existe (et est finie), on l’appelle la i-ème dérivée partielle de f au point

(a1, · · · , an) ∈ D et on la note
∂f

∂xi
(a1, · · · , an).

Si pour tout ā = (a1, · · · , an) ∈ D, f admet une i-ème dérivée partielle au

point ā, l’application
∂f

∂xi
: ā 7→ ∂f

∂xi
(a1, · · · , an) est appelée la i-ème

dérivée partielle de f (ou la dérivée partielle par rapport à la variable xi ).
Si toutes ces fonctions sont continues, on dit que f est de classe C1 sur D.
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Quelques rappels

Exemple 1

Considérons la fonction f (x , y) = xy . On a

∂f

∂x
(a, b) = lim

h→0

(a+ h)b − ab

h
= b,

∂f

∂y
(a, b) = lim

h→0

a(b + h)− ab

h
= a.

Remarque

Dans la pratique, pour calculer une dérivée partielle par rapport à la
variable xi , on fixe les autres variables et on calcule la dérivée usuelle à une
variable où la variable est xi . Dans l’exemple précédent,

∂f

∂x
(x , y) = (xy)′ (où y est considérée comme une constante) = y ,

∂f

∂y
(x , y) = (xy)′ (où x est considérée comme une constante) = x .
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Quelques rappels

Définition 2

Soit f : D ⊆ Rn → R une application. Si toutes les dérivées partielles de f
existent en un point ā = (a1, · · · , an) ∈ D, alors on appelle gradient de f
au point ā le vecteur

∇f (a1, · · · , an) =
( ∂f

∂x1
(a1, · · · , an), · · · ,

∂f

∂xn
(a1, · · · , an)

)
Exemple 1 (suite)

On a
∇f (a, b) = (b, a).
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Quelques rappels

Définition 3

La dérivée partielle de f d’ordre j par rapport aux variables xi1 , . . . , xij est
définie par

∂j f

∂xi1 · · · ∂xij
=

∂

∂xi1

( ∂j−1f

∂xi2 · · · ∂xij

)
.

Exemple 2

Considérons la fonction f (x , y) = x4+ y3. Alors, les dérivées d’ordre 2 sont

∂2f

∂x2
(x , y) =

∂

∂x
(
∂f

∂x
(x , y)) = 12x2,

∂2f

∂y2
(x , y) =

∂

∂y
(
∂f

∂y
(x , y)) = 6y ,

∂2f

∂x∂y
(x , y) =

∂2f

∂y∂x
(x , y) = 0.
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Quelques rappels

De façon itérative, si toutes les dérivées partielles d’ordre k ∈ N de f
existent et sont continues sur tout D, on dit que f est de classe Ck sur D.

Revoyez le lemme de Schwarz vue en Math 2 (si f assez régulière, on peut
prendre les dérivées partielles dans n’importe quel ordre).

Définition 4

Le laplacien d’une fonction de classe C 2 f : D ⊆ Rn → R est donné par

∆f (x̄) =
∂2f

∂x21
(x̄) + · · ·+ ∂2f

∂x2n
(x̄).
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Composition des fonctions de plusieurs variables

Proposition 5 (Règle de la châıne)

Soient f : Rn → R une fonction admettant des dérivées partielles et
t 7→ (x1(t), ..., xn(t)) une application dérivable. Alors, l’application
g : R → R donnée par la composition g(t) = f (x1(t), ..., xn(t)) est
dérivable et

g ′(t) =
∂f

∂x1

dx1
dt

+ ...+
∂f

∂xn

dxn
dt

,

où les ∂f
∂xi

sont calculées en (x1(t), ..., xn(t)) et les
dxi
dt en t.

Attention

C’est un cas particulier de la multiplication des jacobiennes vue en Math 2.

Exercice (ai-je bien compris ?)

Soit f une fonction de classe C 1 sur R2. Calculer la dérivée de la fonction
x 7→ f (x , x). (Indication : ce n’est pas 2∂f

∂x (x , x).)
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Une équation aux dérivées partielles d’ordre m est une relation entre une
fonction de plusieurs variables u : Rn → R et ses dérivées partielles :

F
(
x̄ , u, · · · , ∂u

∂xi
, · · · , ∂2u

∂xi∂xj
, · · · , ∂mu

∂xi1 . . . ∂xim

)
= 0 . (E )

Le plus souvent, le problème est posé sur un domaine D ⊆ Rn. On cherche
des applications u : D → R vérifiant l’équation (E ) et satisfaisant des
conditions sur le bord ∂D (on parle aussi de conditions initiales lorsque
l’une des variables représente le temps).
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Équation des ondes

La propagation d’une onde sur une corde infinie est modélisée par
l’équation des ondes sur R

(EO1)


∂2u

∂t2
− c2

∂2u

∂x2
= 0, ∀x ∈ R, ∀t > 0,

u(x , 0) = u0(x), ∀x ∈ R,
∂u

∂t
(x , 0) = u1(x), ∀x ∈ R,

où c est la vitesse de propagation de l’onde et les fonctions u0 et u1 sont
respectivement, l’état et la vitesse initiaux (conditions initiales).

Remarque

L’équation étant d’ordre deux en temps en temps, il est naturel d’imposer
les deux conditions initiales u0 et u1 en t = 0.
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Équation des ondes : formule de D’Alembert

Théorème 1 (Formule de D’Alembert)

Supposons que u0 est de classe C 2 sur R et que u1 est de classe C 1 sur R.
Alors il existe une unique solution de (EO1) donnée par

u(x , t) =
1

2

(
u0(x + ct) + u0(x − ct)

)
+

1

2c

∫ x+ct

x−ct
u1(y) dy .

Cette expression est parfois appelée formule de D’Alembert.
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Équation des ondes : conditions aux limites

On s’intéresse maintenant à la propagation d’une onde sur une
demi-corde (infinie). Elle est modélisée par l’équation des ondes avec une
condition de frontière :

(EO2)



∂2u

∂t2
− c2

∂2u

∂x2
= 0, ∀x > 0, ∀t > 0,

u(x , 0) = u0(x), ∀x > 0,
∂u

∂t
(x , 0) = u1(x), ∀x > 0,

∂u

∂x
(0, t) = 0, ∀t > 0,

où c est la vitesse de propagation de l’onde et les fonctions u0 et u1 sont
respectivement, l’état et la vitesse initiale. Physiquement, la condition de
frontière s’interprète comme une paroi réfléchissante. Si les conditions
initiales u0 et u1 dans (EO2) sont les restrictions de fonctions paires
définies sur tout R pour lesquelles le Théorème 1 et donc la formule de
d’Alembert s’appliquent, on peut tirer profit de ce théorème pour résoudre
également (EO2).
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Équation des ondes : solutions à variables séparées

Dans une géométrie adaptée, la séparation des variables consiste à
chercher des solutions où on ”sépare” les variables x et t, en écrivant

u(x , t) = F (x)G (t).

On cherche donc les solutions qu’on appelle à variables séparées de
l’équation des ondes. On suppose donc qu’il existe des fonctions F et G
telles que

u(x , t) = F (x)G (t).

On a
∂2u

∂t2
= FG

′′
,

∂2u

∂x2
= F

′′
G

et en remplaçant dans l’équation, on obtient

FG ′′ = c2F ′′G .
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Équation des ondes : solutions à variables séparées

En supposant en plus que F (x) ̸= 0 et G (t) ̸= 0, on obtient

c2
F ′′(x)

F (x)
=

G ′′(t)

G (t)
.

Comme la fonction de gauche dépend uniquement de x et celle de droite
uniquement de t, il existe un réel λ ∈ R, tel que

c2
F ′′(x)

F (x)
= λ,

G ′′(t)

G (t)
= λ.

Donc on obtient les équations différentielles linéaires ordinaires suivantes :

c2F ′′(x)− λF (x) = 0,

G ′′(t)− λG (t) = 0.
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Équation des ondes : solutions à variables séparées

On distingue alors les trois cas suivants :

si λ = 0, alors
F (x) = ax + b, G (t) = αt + β.

si λ > 0, alors

F (x) = ae
√
λ
c

x + be−
√
λ
c

x , G (t) = αe
√
λt + be−

√
λt .

si λ < 0, alors

F (x) = a cos

(√
−λ

c
x

)
+ b sin

(
−
√
−λ

c
x

)
,

G (t) = a cos
(√

−λt
)
+ b sin

(√
−λt

)
.

En tenant compte des conditions initiales et des conditions aux limites, on
détermine le cas qui se produit et les solutions de l’équation.
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Équation des ondes : séries de Fourier

On cherche les solutions L-périodiques de l’équations des ondes :

(EO3)



∂2u

∂t2
− c2

∂2u

∂x2
= 0, ∀x ∈ R, ∀t > 0,

u(x , 0) = u0(x), ∀x ∈ R,
∂u

∂t
(x , 0) = u1(x), ∀x ∈ R,

u(x , t) = u(x + L, t),

où on suppose que les fonctions u0 et u1 sont L-périodiques et admettent
un développement en séries de Fourier (ω = 2π

L )

u0(x) =
a0,0
2

+
∑
n≥1

(a0,n cos(nωx) + b0,n sin(nωx))

u1(x) =
a1,0
2

+
∑
n≥1

(a1,n cos(nωx) + b1,n sin(nωx))
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Équation des ondes : séries de Fourier

Supposons que la solution u(x , t) soit développable en séries de Fourier

u(x , t) =
a0(t)

2
+
∑
n≥1

(an(t) cos(nωx) + bn(t) sin(nωx)).

En dérivant formellement terme à terme (utiliser le théorème de dérivation
terme à terme des séries du Cours 2 pour un argument rigoureux au cas
par cas), on obtient

∂2u

∂t2
=

a′′0(t)

2
+

∑
n≥1

(
a′′n(t) cos(nωx) + b′′n(t) sin(nωx)

)
,

∂2u

∂x2
=

∑
n≥1

−(nω)2
(
an(t) cos(nωx) + bn(t) sin(nωx)

)
.
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Équation des ondes : séries de Fourier

Par identification, on a

∂2u

∂t2
− c2

∂2u

∂x2
=

a′′0(t)

2
+
∑
n≥1

( (
a′′n(t) + (cnω)2an(t)

)
cos(nωx)

+
(
b′′n(t) + (cnω)2bn(t)

)
sin(nωx)

)
= 0

et en tenant compte des conditions initiales et utilisant l’unicité de la
décomposition en série de Fourier de x 7→ u(x , t) pour tout t, on obtient

a′′0(t) = 0, a0(0) = a0,0, a′0(0) = a1,0

a′′n(t) + λ2
nan(t) = 0, an(0) = a0,n, a′n(0) = a1,n,

b′′n(t) + λ2
nbn(t) = 0, bn(0) = b0,n, b′n(0) = b1,n,

où λn = cnω.
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Équation des ondes : séries de Fourier

En résolvant les équations différentielles ordinaires précédentes, on obtient

a0(t) = a1,0t + a0,0,

an(t) = a0,n cos(λnt) +
a1,n
λn

sin(λnt),

bn(t) = b0,n cos(λnt) +
b1,n
λn

sin(λnt),

et donc la solution u(x , t).
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Équation des ondes : séries de Fourier

Exercice

Calculer les solutions 2-périodiques de l’équation des ondes, avec

u0(x) =

{
x si x ∈ [0, 1[,

2− x si x ∈ [1, 2[,

et u1(x) = 0.
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Équation de Laplace, Équation de Poisson

On considère l’équation de Laplace

∆u = 0,

et l’équation de Poisson
∆u = ρ.
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Équation de Laplace : solutions à variables séparées

On cherche des solutions de l’équation de Laplace

∆u(x , y) = 0, ∀(x , y) ∈ R2,

à variables séparées. On suppose donc qu’il existe deux fonctions F (x) et
G (y) telles que

u(x , y) = F (x)G (y).

En remplaçant dans l’équation, on obtient

F ′′(x)G (y) + F (x)G ′′(y) = 0

et il existe donc une constante λ telle que

F ′′(x)

F (x)
= λ = −G ′′(y)

G (y)
.
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Équation de Laplace : solutions à variables séparées

Comme dans le cas des équations des ondes, on distingue alors les trois
cas suivants :

si λ = 0, alors

F (x) = ax + b, G (y) = αy + β.

si λ > 0, alors

F (x) = ae
√
λx + be−

√
λx , G (y) = α cos(

√
λy) + β sin(−

√
λy).

si λ < 0, alors

F (x) = a cos
(√

−λx
)
+ b sin

(√
−λx

)
,

G (y) = αe
√
−λy + βe−

√
−λy .

En tenant compte des conditions initiales, on détermine le cas qui se
produit et les solutions de l’équation.
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Équation de la chaleur

On s’intéresse à l’équation de la chaleur avec condition initiale sur tout R

(EC1)

 ∂u

∂t
− c

∂2u

∂x2
= 0, ∀x ∈ R, ∀t > 0,

u(x , 0) = u0(x), ∀x ∈ R,

et l’équation de la chaleur sur [0,+∞[ avec condition au bord en x = 0

(EC2)

 ∂u

∂t
− c

∂2u

∂x2
= 0, ∀x > 0, ∀t > 0,

u(0, t) = u0(t), ∀t > 0,

Remarque

L’équation étant d’ordre 1 en temps, il est naturel de n’imposer qu’une
seule condition initiale u0 en t = 0 dans (EC1).
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Équation de la chaleur

Grâce aux séries de Fourier, on peut démontrer le résultat suivant :

Théorème 3

Soient c > 0 et u0 : R → R une fonction C 1 par morceaux, continue et
2π-périodique. Alors il existe une unique solution u de (EC1) vérifiant

pour tout t > 0, u(x , t) est 2π-périodique comme fonction en x ,

la dérivée partielle
∂2u

∂x2
(resp.

∂u

∂t
) existe et est continue sur

R×]0,+∞[,

limt→0+ supx∈R |u(x , t)− u0(x)| = 0.

Cette dernière propriété dit exactement que, posant ut : x 7→ u(x , t), on a
ut → u0 uniformément sur R quand t → 0+.
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Équation de la chaleur

Théorème 4

Soient c > 0 et u0 : R+ → R une fonction C 1 par morceaux, continue et
2π-périodique. Alors il existe une unique solution u de (EC2) vérifiant

pour tout x > 0, u(x , t) est 2π-périodique comme fonction en t,

la dérivée partielle
∂2u

∂x2
(resp.

∂u

∂t
) existe et est continue sur

]0,+∞[×]0,+∞[,

limx→0+ supt>0 |u(x , t)− u0(x)| = 0.
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Merci de votre attention !
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