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Exemple

Si f pxq � 1?
π
e�x2 (fonction gaussienne) alors sa transformée de Fourier

est (voir exo Cours 7) :

f̂ ppq � e�p2{4.

C’est un fait remarquable qu’on obtienne encore une exponentielle
similaire. On verra plus loin par changement de variable que si
gpxq � 1?

2π
e�x2{2 alors ĝppq � e�p2{2 de sorte que la fonction gaussienne

est un vecteur propre de la transformée de Fourier.
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Retour sur le Dirac

Comme par définition δapf q � f paq, on a (par passage à la limite)
δ̂appq � e�ipa. En particulier δ̂0 � 1 est une fonction constante. Ceci peut
être vu comme une première manifestation qualitative du principe
d’incertitude : la transformée de Fourier d’un signal très localisé en espace
doit être très délocalisée en fréquence (quoi de plus localisé qu’une mesure
de Dirac, ou de plus délocalisé qu’une fonction constante...).

Remarque

Calculons également

pf � δaqpxq �
»
R
f px � yqdδapyq � f px � aq.

En particulier f � δ0 � f .
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Exemple de calcul

Regardons une fonction nulle en dehors d’un intervalle borné
r�M,Ms � R pour voir que dans ce cas, la transformée de Fourier est très
régulière même si ρ n’est pas continue, mais bien localisée. Posons

ρptq �
$&
%

0 , si t   �1 ,
1{2 , si � 1 ¤ t ¤ 1 ,
0 , si t ¡ 1 .

On a alors

ρ̂ppq � 1

2

» 1

�1
e�ipxdx � e ip � e�ip

2ip
� sinppq

p
�: sincppq

si p � 0 ; on obtient séparément ρ̂p0q � 1 pour p � 0. Cette fonction est
C8 sur R comme somme d’une série entière de rayon de convergence
infini :

sincppq �
�8̧

k�0

p�1qk
p2k � 1q!p

2k .
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Formules calculatoires

Théorème

Si f , g P L1pRq, on a les propriétés suivantes.

1 (Linéarité) La transformée de Fourier p� est linéaire : {f � g � f̂ � ĝ ,pcf � cf̂ pour c P C.
2 (Conjugaison) On a pf ppq � f̂ p�pq.
3 (Dérivée) Si f est C1 et que f , f 1 P L1pRq, on a ypf 1qppq � ipf̂ ppq .
4 (Produit par x) Si f , xf P L1pRq, alors f̂ dérivable et pxf ppq � ipf̂ q1ppq.
5 (Translation) Si gpxq � f px � aq alors ĝppq � e ipa f̂ ppq.
6 (Changement d’échelle) Si gpxq � f psxq pour s � 0, alors

ĝppq � 1
s f̂ pps q. En particulier, on a pρεppq � pρpεpq.

7 (Produit) pfg � 1
2π f̂ � ĝ
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Exemple

(Retour sur les transformées de Fourier des gaussiennes) Si

gσpxq � 1?
2πσ2

e�
x2

2σ2 alors on a gσpxq � 1
σg1p xσ q donc xgσppq � pg1pσpq.

Comme on a calculé à l’exemple 2 que zg1{?2ppq � pg1pp{?2q � e�p2{4, on

en déduit pg1ppq � e�p2{2 puis

xgσppq � zg1{?2

�
σ?
2
p



� e�

p2σ2

2 .
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Théorème

(Lemme de Riemann-Lebesgue) Si f P L1pRq alors f̂ est continue et

lim
pÑ�8 f̂ ppq � 0.

Remarque : ce théorème est une autre façon de voir que la mesure de
Dirac δ0 ne peut être écrite comme Tg pour un g P L1pRq. On a en effetpδ0ppq � 1 pour tout p de sorte que limpÑ�8 pδ0ppq � 1 � 0.
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Si on sait que f̂ converge vers 0 et aussi une propriété d’intégrabilité :

Théorème

[Théorème d’injectivité et inversion de la TF] Deux fonctions continues
intégrables f , g telles que

@t P R , f̂ ptq � ĝptq ,

satisfont f pxq � gpxq pour tout x P R (si f , g sont seulement intégrables
alors f � g pour ”presque tout x P R”). En plus, si f̂ P L1pRq, on a la
formule

f pxq � 1

2π

»
R
f̂ ptqe itxdt � 1

2π
Frf̂ sp�xq

en tout point x de continuité de f .

Exercice

Calculer la transformée de Fourier de f pxq � e�|x |. En déduire la
transformée de Fourier de gpxq � 1

1�x2
.
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On va maintenant expliquer l’analogue du théorème de Plancherel pour les
séries de Fourier qui dit que si f est 2π-périodique, avec |f |2 intégrable sur
une période, alors

1

2π

» 2π

0
|f pxq|2dx �

�8̧

n��8
|cnpf q|2.

On note l’ensemble des fonctions de carré sommable

L2pI q :� tf : I Ñ C mesurable : |f |2 intégrableu.

On rappelle que

L1pI q � tf : I Ñ C mesurable : |f | intégrableu.
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On a le théorème suivant :

Théorème

[Théorème de Plancherel] Si f P L2pRq alors on peut donner un sens à
f̂ P L2pRq et on a l’égalité» �8

�8
|f pxq|2dx � 1

2π

» �8
�8

|f̂ ppq|2dp.

Nous n’avions défini f̂ que pour f P L1pRq jusqu’au théorème précédent.
Pour obtenir ce théorème, on montre d’abord l’identité pour
f P L1pRq X L2pRq et on en déduit que si f P L2pRq et qu’on choisit une
suite de fonctions pfnq dans L1pRq X L2pRq telle que

³
R |fn � f |2dx Ñ 0,

alors il existe une fonction g P L2pRq (indépendante de l’approximation
pfnq) telle que

³
R |f̂n � g |2dp Ñ 0. Il est alors cohérent de définir f̂ :� g .
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Exemple

Pour f pxq � 1?
2π
e�x2{2, on a vu que f̂ ppq � e�p2{2 de sorte que dans ce

cas le théorème donne

1

2π

» �8
�8

e�x2dx � 1

2π

» �8
�8

e�p2dp.

On peut se souvenir du coefficient 1{2π à partir de cet exemple. Les
constantes de normalisation sont imposées par
f̂ p0q � 1 � ³�8�8 1?

2π
e�x2{2dx .
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Equation de la chaleur

Étant donnée une condition initiale v : RÑ R, on veut maintenant
résoudre l’équation de la chaleur homogène sur tout R, d’inconnue
u : r0,�8r�RÑ R :" Bu

Bt pt, xq � B2u
Bx2 pt, xq � 0, pour t ¡ 0, x P R ,

up0, xq � vpxq, pour x P R .
(EC)

La modélisation associée a déjà été brièvement discutée dans le cadre
périodique.
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Equation de la chaleur

On raisonne d’abord formellement et on pose utpxq � upt, xq. Supposons
qu’une solution admette une transformée de Fourier en la variable d’espace
x pour tout temps t ¥ 0 (par exemple ut est intégrable, i.e. est dans
L1pRq). Alors, pour p fixé, putppq va vérifier une équation différentielle de
variable t. En effet, on écrit pour t Ps0,�8r

B
Bt putppq � B

Bt
»
R
upt, xqe�ipxdx �

2

»
R

Bu
Bt pt, xqe

�ipxdx

�
xBu
Bt pt, pq �4

yB2u
Bx2 pt, pq �5 pipq

2 putppq � �p2 putppq. (ED)

L’égalité 2 est la dérivation de l’intégrale à paramètre t (p fixé), l’égalité 4
suit de (EC) et l’égalité 5 de la double application de la formule pour la
transformée de Fourier d’une dérivée en la variable spatiale x .
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Equation de la chaleur

Donc ajoutant la condition initiale pu0ppq � pvppq à l’équation différentielle
(ED) de variable t (toujours pour p fixé), on obtient putppq � e�p2tpvppq.
Indépendamment, on a vu que si g?2tpxq � 1?

4πt
e�

x2

4t , alors

zg?2tppq � e�p2t donc putppq �zg?2tppqpvppq.
Maintenant, par la formule liant transformée de Fourier et convolution, on
voit que la fonction

utpxq � pg?2t � vqpxq (CV)

a la bonne transformée de Fourier. Par le calcul précédent :

xBu
Bt ppq �

yB2u
Bx2 ppq.

Donc par le théorème d’inversion, u satisfait donc l’équation.
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Équation de la chaleur : existence et unicité d’une solution

Appliquant les théorèmes des chapitres précédents pour avoir un argument
rigoureux, on a :

Théorème

Soit v une fonction continue et intégrable sur R. Alors il existe une unique
solution u de (EC) vérifiant

1 pour tout t Ps0,�8r, u est continue et intégrable en x (i.e.
x ÞÑ upt, xq est intégrable sur R),

2 les dérivées partielles B2u
Bx2 et Bu

Bt sont bien définies, continues sur
s0,�8r�R, et intégrables en x pour tout t Ps0,�8r,

3 pour tout x P R, on a up0, xq � vpxq et même

}ut � v}1 :�
»
R
|upt, xq � vpxq| dx Ñ 0 quand t Ñ 0 .

De plus, u est C8 sur s0,�8r�R et continue sur r0,�8r�R.
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Equation de la chaleur : comportement en temps long

Théorème

[Équation de la chaleur (EC) : résultats de comportement en temps long]
Soit v une fonction continue. Dans les deux cas suivants, on se donne u la
solution de (EC) donnée par la convolution (CV) et on pose
ut : x ÞÑ upt, xq.

1 On suppose que v P L1pRq est intégrable. Alors ut
?
4πt Ñ ³

R vpzqdz
simplement sur R quand t Ñ �8. En particulier, ut Ñ 0 quand
t Ñ �8.

2 On suppose que v tend vers des limites finies en �8 : il existe
l�, l� P R tels que

lim
xÑ�8 vpxq � l� et lim

xÑ�8 vpxq � l� .

Alors ut Ñ l��l�
2 simplement sur R quand t Ñ �8.
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L’équation des ondes (I)

Nous avons déjà proposé une solution de l’équation des ondes homogène
avec condition initiale dans le Cours 4 : la formule de d’Alembert. Une
méthode pour obtenir cette formule utilise la transformée de Fourier. C’est
l’objet de l’exercice suivant :

Exercice

Utiliser la transformation de Fourier pour résoudre l’équation des ondes
(ou de la corde vibrante) :$&

%
B2u
Bt2 pt, xq � B2u

Bx2 pt, xq � 0, pour t ¡ 0, x P R ,
up0, xq � vpxq pour x P R ,
Bu
Bt p0, xq � 0, pour x P R .
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L’équation des ondes (II)

Reprenons les arguments formels du début du chapitre. Soit p P R une
fréquence fixée. On a pour t Ps0,�8r

B2
Bt2 putppq � B2

Bt2
»
R
upt, xqe�ipxdx �

»
R

B2u
Bt2 pt, xqe

�ipxdx

�
yB2u
Bt2 pt, pq �

yB2u
Bx2 pt, pq � �p2 putppq .

Les solutions de cette équation différentielle (p est toujours fixé) sont donc
données par

@t ¥ 0 , putppq � Appq cos pptq � Bppq sinpptq .
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L’équation des ondes (III)

En y adjoignant les conditions initiales

pu0ppq � v̂ppq et
xBu
Bt p0, pq �

»
R

Bu
Bt p0, xqe

�ipxdx � 0 ,

on obtient Bppq � 0 et Appq � v̂ppq. D’où

putppq � v̂ppqe
ipt � e�ipt

2
ùñ utpxq � 1

2
pupx � tq � upx � tqq ,

On retrouve la formule de d’Alembert dans ce cas particulier.
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L’équation de Schrödinger (I)

Étant donnée une condition initiale v : RÑ R, on veut maintenant
résoudre l’équation de Schrödinger homogène sur tout R, d’inconnue
u : r0,�8r�RÑ C :"

i BuBt pt, xq � B2u
Bx2 pt, xq � 0, pour t ¡ 0, x P R ,

up0, xq � vpxq, pour x P R .
(ES)

On raisonne formellement comme au début de ce cours, posant
utpxq � upt, xq. Supposons qu’une solution admette une transformée de
Fourier en la variable d’espace x pour tout temps t ¥ 0 (par exemple ut
est intégrable, i.e. est dans L1pRq).
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L’équation de Schrödinger (II)

Alors, pour p fixé, putppq va vérifier une équation différentielle de variable t.
En effet, on écrit pour t Ps0,�8r

B
Bt putppq � B

Bt
»
R
upt, xqe�ipxdx �

2

»
R

Bu
Bt pt, xqe

�ipxdx (ED2)

�
xBu
Bt pt, pq �4 �i

yB2u
Bx2 pt, pq �5 ip2 putppq. (1)

L’égalité 2 est la dérivation de l’intégrale à paramètre t (p fixé), l’égalité 4
suit de i�(ES) et l’égalité 5 de la double application de la formule pour la
transformée de Fourier d’une dérivée en la variable spatiale x .
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L’équation de Schrödinger (III)

Donc ajoutant la condition initiale pu0ppq � pvppq à l’équation différentielle
(ED2) de variable t (toujours pour p fixé), on obtient putppq � e ip

2tpvppq.
En particulier, comme p2t est réel, | putppq| � |pvppq|. Ainsi, utilisant aussi le
théorème de Plancherel l’énergie

³
R |utpxq|2dx est indépendante du temps

car»
R
|utpxq|2dx � 1

2π

»
R
| putppq|2 dp � 1

2π

»
R
|pvppq|2 dp � »

R
|vpxq|2dx .
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L’équation de Schrödinger (IV)

Comme pour l’équation de la chaleur, cette formule multiplicative en
Fourier suggère que la solution soit donnée pour t ¡ 0 par une
convolution. Il s’avère que c’est bien le cas

upt, xq � 1

e�i π
4

?
4πt

»
R
vpx � yqe�i y

2

4t dy .

Remarquons tout d’abord qu’on peut formellement écrire le noyau
1

e�i π4
?
4πt

e�i y
2

4t avec lequel on convole la condition initiale v comme

g?�2itpyq. Concernant le sens de cette intégrale, remarquez également
qu’il s’agit d’une intégrale oscillante, dont a on a essentiellement vérifié la
convergence pour v � 1 et t � 1

4 .
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Le principe d’incertitude (I)

En physique, ce principe donne une limitation théorique à la précision à
laquelle on peut connâıtre à la fois la position et la quantité de
mouvement d’une particule.

Étant donnée une particule dont la position suit une densité de probabilité
f , alors la position moyenne de la particule est donnée par l’espérance
x0 :�

³
R xf pxqdx P R. Une façon de mesurer alors l’écart moyen de cette

particule par rapport à cette position moyenne est donné par la variance ou
incertitude donnée par σ2 :� ³Rpx � x0q2f pxqdx . Essentiellement, σ � 0
dans la cas déterministe d’une particule en x0 avec probabilité 1, i.e.
f � δx0 .
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Le principe d’incertitude (II)

En physique quantique, si cette distribution de position est donnée en
général par f pxq � |ψpxq|2, alors la distribution du moment est donnée par
|ψ̂ppq|2{p2πq de sorte que la variance ou incertitude du moment est
donnée par 1

2π

³
Rpp � p0q2|ψ̂ppq|2dp où p0 � 1

2π

³
R p|ψ̂ppq|2dp. Dans la

suite, on prendra pour simplifier x0 � p0 � 0. Attention que les constantes
explicites apparaissant dans cette section dépendent de la normalisation
(souvent différente en physique) choisie pour définir la transformée de
Fourier. D’autre part, dans ces applications en physique quantique, la
constante de Planck ℏ joue un rôle dimensionnel, mais elle n’apparâıt pas
en général dans les énoncés mathématiques où l’on préfère travailler en
variables adimensionnées.
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Localisation

Nous avons déjà évoqué le principe (vague pour l’instant) suivant : plus
une fonction est localisée, plus sa transformée de Fourier est ”étalée”. Par
exemple, nous avons vu que la transformée de Fourier d’une indicatrice
1
21r�1,1s est la fonction sinc qui ne décrôıt pas très vite vers 0 au sens où
elle n’est pas intégrable en �8. Une autre manifestation plus quantitative
de ce principe est le point concernant le changement d’échelle : pour
f P L1pRq donnée, si

@x P R , fεpxq :� 1

ε
f
�x
ε

	
pour ε ¡ 0, alors pfεppq � f̂ pεpq. Dans le cas où

³
R f � 1, nous avons vu

que
³
R fε � 1 également et que les fε se concentrent en 0 au sens où

fε á δ0 au sens des mesures quand εÑ 0�. Le changement d’échelle
donne alors que les pfε s’étalent au sens où pfε Ñ pf p0q � ³R f � 1

simplement sur R. À la limite, on retrouve la propriété que la transformée
de Fourier d’une mesure δ0 de Dirac supportée en un seul point est la
fonction constante égale à 1 partout.
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Formalisation du principe

Notation : on note SpRq l’ensemble des fonctions ψ P C8 à décroissance
rapide, c’est à dire telles que toutes les fonctions x ÞÑ |ψpkqpxq|p1� |x |2qm2
sont bornées sur R pour tout m, k P N. Ces propriétés de
décroissance/régularité et les formules calculatoires vues sur la transformée
de Fourier assurent que

ψ P SpRq ùñ ψ̂ P SpRq .

On peut alors formaliser l’intuition ci-dessus dans le théorème suivant (en
regardant les variances dans le cas de la position et du moment nuls en
moyenne).
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Théorème

[Principe d’incertitude d’Heisenberg] Soit ψ P SpRq. Alors on a�»
R
|ψpxq|2dx


2

¤ 2

π

�»
R
x2|ψpxq|2dx


�»
R
p2|ψ̂ppq|2dp



.

De plus, on a égalité si et seulement si ψpxq � ae�bx2 pour des constantes
a P C et b ¡ 0 données.
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Démonstration (I)

On peut tout d’abord observer que, pour b P R, x ÞÑ e�bx2 est dans SpRq
si et seulement si b ¡ 0.

On commence par intégrer par parties en écrivant»
R
|ψpxq|2dx �

»
R
ψpxqψpxqdx � �x |ψpxq|2��8�8 �

»
R
x
�
ψ1pxqψpxq � ψpxqψ1pxq� dx

� 0� 2

»
R
�Re �xψpxqψ1pxq� dx , (2)

en observant que�
ψpxqψpxq

	1
� �ψ1pxqψpxq � ψpxqψ1pxq� � 2Re

�
ψpxqψ1pxq� ,

que x |ψpxq|2 Ñ 0 quand x Ñ �8, car ψ P SpRq implique que
x ÞÑ x2|ψ1pxq|2 est bornée sur R, et remarquant enfin que x est réel.
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Démonstration (II)

Indépendamment, on peut écrire����
»
R
�Re �xψpxqψ1pxq� dx ���� ¤

»
R

���Re �xψpxqψ1pxq��� dx ¤ »
R

��xψpxqψ1pxq�� dx � »
R
|xψpxq| ��ψ1pxq�� dx ,

(3)
utilisant d’abord | ³ f | ¤ ³ |f |, puis que | � Repzq| ¤ |z | pour tout z P C.
Maintenant, utilisant l’inégalité de Cauchy-Schwarz, on a�»

R

��xψpxqψ1pxq�� dx
2

¤
�»

R
|xψpxq|2 dx


�»
R
|ψ1pxq|2dx



. (4)

Enfin, on utilise le Théorème de Plancherel, puis la formule sur la
transformée de Fourier d’une dérivée pψ1ppq � ip pψ pour écrire»

R
|ψ1pxq|2dx � 1

2π

»
R

��� pψ1ppq���2 dp � 1

2π

»
R
|ip pψppq|2dp . (5)

En mettant (2), (3), (4) et (5) bout à bout, on obtient bien l’inégalité
souhaitée.
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Démonstration (III)

Preuve de l’inégalité de Cauchy-Schwarz.

Pour f , g : RÑ C mesurables, la fonction polynômiale de degré 2 :

t ÞÑ
»
R
p|f pxq| � t|gpxq|q2 dx

� t2
»
R
|gpxq|2dx � 2t

»
R
|f pxqgpxq|dx �

»
R
|f pxq|2dx

est positive sur R, donc a au plus une racine et son discriminant ∆ ¤ 0 :

4

�»
R
|f pxqgpxq|dx


2

� 4

�»
R
|gpxq|2dx


�»
R
|f pxq|2dx



¤ 0 ,

pour peu que toutes les intégrales convergent.
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Démonstration (IV)

Exercice

En inspectant les cas d’égalité de toutes les inégalités de la preuve
ci-dessus, montrer qu’on a égalité seulement si c réel et   0 tel que
ψ1pxq � cxψpxq, puis que ψpxq � ae�bx2 avec c � �2b et a P C.
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