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c 2 5 5 z o
Si f(x) = ﬁe‘x (fonction gaussienne) alors sa transformée de Fourier

est (voir exo Cours 7) :
flp) =" /%

C'est un fait remarquable qu’on obtienne encore une exponentielle
similaire. On verra plus loin par changement de variable que si
g(x) = \/%e—xzﬁ alors g(p) = e=P’/2 de sorte que la fonction gaussienne
est un vecteur propre de la transformée de Fourier.
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Retour sur le Dirac

Comme par définition 0,(f) = f(a), on a (par passage a la limite)

6,(p) = e~P2_ En particulier 8o = 1 est une fonction constante. Ceci peut
étre vu comme une premiére manifestation qualitative du principe
d’incertitude : la transformée de Fourier d'un signal trés localisé en espace
doit étre tres délocalisée en fréquence (quoi de plus localisé qu'une mesure
de Dirac, ou de plus délocalisé qu'une fonction constante...).

Remarque

Calculons également
(f % 0,)(x) = J}R f(x —y)doa(y) = f(x — a).
En particulier .
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Exemple de calcul

Regardons une fonction nulle en dehors d'un intervalle borné
[-M, M] c R pour voir que dans ce cas, la transformée de Fourier est treés
réguliere méme si p n'est pas continue, mais bien localisée. Posons

0, sit<-—1,
p(t) =< 1/2, si —1<t<1,
0, sit>1.
On a alors
R 1[1 o e’ —e~P  sin(p) .
p) == e Pdx = - = =: sinc(p
plp) =5 » o ) (p)

si p # 0; on obtient séparément p(0) = 1 pour p = 0. Cette fonction est
C®™ sur R comme somme d'une série entiere de rayon de convergence
infini :
400 k
. (1% o
sinc(p) = —_
(p) Z 2k +1)1P
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Formules calculatoires

Théoreme

Si f,g € LY(R), on a les propriétés suivantes.

© (Linéarité) La transformée de Fourier ~est linéaire : f + g =  + &,

N A

cf = cf pour c € C.
(Conjugaison) On a f(p) = f(—p).

(2]

© (Dérivée) Si f est C! et que f, f' € LX(R), on a (f/)(p) = ipf(p).

@ (Produit par x) Si f,xf € LL(R), alors f dérivable et xf(p) = i(f)(p).
O (Translation) Si g(x) = f(x + a) alors g(p) = eP?f(p).

O (Changement d'échelle) Si g(x) = f(sx) pour s # 0, alors

g(p) = %f(g) En particulier, on a pz(p) = p(ep).

@ (Produit) fg = %f*g
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Exemple

(Retour sur les transformées de Fourier des gaussiennes) Si

g:(x) = 2L 27 alors on a g, (x) = Lg1(%) donc g (p) = £i(op).

Comme on a calculé a I'exemple 2 que &7, 5(p) = &i(p/+/2) = e=P*/4 on
en déduit gi(p) = e P"/2 puis

o

20,2
&) =t (T5p) =%
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Théoreme

(Lemme de Riemann-Lebesgue) Si f € L1(R) alors f est continue et

lim f(p) = 0.

p—to0

Remarque : ce théoréme est une autre facon de voir que la mesure de
[A)irac do ne peut étre écrite comme T, pour un g € L1(R). On a en effet
do(p) = 1 pour tout p de sorte que limp_, 1+ do(p) = 1 # 0.
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Si on sait que f converge vers 0 et aussi une propriété d'intégrabilité :

Théoreme

[Théoréme d'injectivité et inversion de la TF] Deux fonctions continues
intégrables f, g telles que

VteR, F(t) = g(t),

satisfont f(x) = g(x) pour tout x € R (si f, g sont seulement intégrables
alors f = g pour "presque tout x € R"). En plus, si f € L}(R), on ala
formule

Flx) = fRf(t)eitxdtzzl]:[f](—x)

~or 71'

en tout point x de continuité de f.

Calculer la transformée de Fourier de f(x) = e XI. En déduire la

transformée de Fourier de g(x) = 1+1X2.
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On va maintenant expliquer I'analogue du théoréme de Plancherel pour les
séries de Fourier qui dit que si f est 2w-périodique, avec |f|2 intégrable sur
une période, alors

1 27 +0

FOOPdx = D] el

27T 0 ne—o

On note I'ensemble des fonctions de carré sommable
L2(I) := {f : | — C mesurable : |f|? intégrable}.
On rappelle que

LY(I) = {f : | - C mesurable : |f| intégrable}.
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On a le théoréme suivant :

Théoreme

[Théoréme de Plancherel] Si f € L2(R) alors on peut donner un sens a
f € L2(R) et on a I'égalité

400 +oo
f| |W—f p)Pdp.

Nous n’avions défini f que pour f € L1(R) jusqu'au théoréme précédent.
Pour obtenir ce théoreme, on montre d'abord I'identité pour

f e LY(R) n L?(R) et on en déduit que si f € L?(R) et qu'on choisit une
suite de fonctions (f,) dans L'(R) n L?(R) telle que § |f, — f|?dx — 0,
alors il existe une fonction g € L?(R) (indépendante de I'approximation
(fn)) telle que § |7, — g|?dp — 0. Il est alors cohérent de définir f := g.
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Pour f(x) = \/%e*XZ/z, on a vu que £(p) = e P72 de sorte que dans ce
cas le théoreme donne
1 +00 +0
> e dx = f e P dp.
™

On peut se souvenir du coefficient 1/27 a partir de cet exemple. Les

constantes de normalisation sont imposées par

F(0) = 1= [ L e24x.

Mathématiques 4 Cours 8. Transformée de Fourier et Applicatic 5 février 2024 11/32



Equation de la chaleur

Etant donnée une condition initiale v : R — R, on veut maintenant
résoudre |'équation de la chaleur homogene sur tout R, d'inconnue
u:[0,40[xR—>R:
%(tx) g (t,x) =0, pourt>0, xeR, (EC)
u(0,x) = v(x), pour x € R.

La modélisation associée a déja été brievement discutée dans le cadre
périodique.
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Equation de la chaleur

On raisonne d'abord formellement et on pose u:(x) = u(t, x). Supposons
qu'une solution admette une transformée de Fourier en la variable d'espace
x pour tout temps t > 0 (par exemple u; est intégrable, i.e. est dans
L1(R)). Alors, pour p fixé, ;(p) va vérifier une équation différentielle de
variable t. En effet, on écrit pour t €]0, +-o0[

0 0 ; ou ;
atut(p) atJRu(t,x)e dx - fRat(t,x)e dx

52’ 8/-271 . 2~ 2~
= 5, (t:P) £ 55(tp) < (i) Ge(p) = —p e (p). (ED)

L'égalité 2 est la dérivation de I'intégrale a parametre t (p fixé), I'égalité 4
suit de (EC) et I'égalité 5 de la double application de la formule pour la
transformée de Fourier d'une dérivée en la variable spatiale x.
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Equation de la chaleur

Donc ajoutant la condition initiale dp(p) = V(p) a I'équation différentielle
. . - . ~ 2~
(ED) de variable t (toujours pour p fixé), on obtient i:(p) = e PtV (p).
2

Indépendamment, on a vu que si g 57(x) = \/%e_ﬂ, alors

At
— _p2 ~ — ~
g 5:(p) = e Pt donc ir(p) = & :(P)V(P)-
Maintenant, par la formule liant transformée de Fourier et convolution, on
voit que la fonction

ur(x) = (8¢ * V) (%) (CV)

a la bonne transformée de Fourier. Par le calcul précédent :

du 2y
E(P) = @(P)

Donc par le théoreme d'inversion, u satisfait donc I'équation.
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Equation de la chaleur : existence et unicité d'une solution

Appliquant les théoremes des chapitres précédents pour avoir un argument
rigoureux, on a :

Théoreme

Soit v une fonction continue et intégrable sur R. Alors il existe une unique
solution u de (EC) vérifiant

@ pour tout t €]0,4+00[, u est continue et intégrable en x (i.e.
x — u(t, x) est intégrable sur R),

@ les dérivées partielles % et % sont bien définies, continues sur
10, +oo[ xR, et intégrables en x pour tout t €]0, +o0[,

@ pour tout x € R, on a u(0, x) = v(x) et méme

|ug — v|1 := J lu(t,x) — v(x)|dx — 0 quand t - 0.
R

De plus, u est C* sur ]0,+o0[ xR et continue sur [0, +o0[ xR.
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Equation de la chaleur : comportement en temps long

Théoreme

[Equation de la chaleur (EC) : résultats de comportement en temps long]
Soit v une fonction continue. Dans les deux cas suivants, on se donne u la
solution de (EC) donnée par la convolution (CV) et on pose

up : x — u(t, x).

@ On suppose que v € L1(R) est intégrable. Alors u;/4nt — §g v(z)dz
simplement sur R quand t — +c0. En particulier, u; — 0 quand
t — +00.

@ On suppose que v tend vers des limites finies en +oo : il existe
I+,1— € R tels que

xﬂToo vix) = I et Xﬂrfoo vix)=1I_.

Alors u; — I+J2r simplement sur R quand t — +o0.
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L'équation des ondes (1)

Nous avons déja proposé une solution de I'équation des ondes homogene
avec condition initiale dans le Cours 4 : la formule de d'Alembert. Une
méthode pour obtenir cette formule utilise la transformée de Fourier. C'est
I'objet de I'exercice suivant :

Utiliser la transformation de Fourier pour résoudre |'équation des ondes
(ou de la corde vibrante) :

52 (t,x) — a7(1-“,X)=0, pour t > 0,x € R,
0,x) = pour x € R,

R
2(0,x) =0, pour x € R.

\/

Q)lQ) E

Mathématiques 4 Cours 8. Transformée de Fourier et Applicatic 5 février 2024 17 /32



L'équation des ondes (I1)

Reprenons les arguments formels du début du chapitre. Soit p € R une
fréquence fixée. On a pour t €]0, +o0|

2 . 02 J ; u ;
—i(p) = =— | u(t,x)e”"Pdx =J —(t,x)e™"PXdx
ot2 t(p) ot Jp (£, ) Raﬂ( )

2u 2y )
6t2(t p) = o 2( ,p) = —p-i(p).

Les solutions de cette équation différentielle (p est toujours fixé) sont donc
données par

Vt>0, :(p)=A(p)cos(pt) + B(p)sin(pt).
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L'équation des ondes (I11)

En y adjoignant les conditions initiales

du ou .
do(p) = V(p) et = (0,p) JR 5 (0,x)ePdx =0,

on obtient B(p) =0 et A(p) = V(p). D'ou
~ . elPt 4 g—ipt 1
5(p) = 9(p) T = wl) = 5 (ulx + 1) +ulx — 1)

On retrouve la formule de d’'Alembert dans ce cas particulier.
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L'équation de Schrodinger (1)

Etant donnée une condition initiale v : R — R, on veut maintenant
résoudre |'équation de Schrédinger homogene sur tout R, d'inconnue
u:[0,+0[xR —>C:
i@(tx)—ai“(tx)=0 ourt >0, xelR
ot \ 5 Ox2\ ™) y P ’ ) (ES)
u(0, x) = v(x), pour x € R.

On raisonne formellement comme au début de ce cours, posant

ut(x) = u(t, x). Supposons qu'une solution admette une transformée de
Fourier en la variable d'espace x pour tout temps t > 0 (par exemple u;
est intégrable, i.e. est dans L1(R)).
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L'équation de Schrodinger (II)

Alors, pour p fixé, t:(p) va vérifier une équation différentielle de variable t.

En effet, on écrit pour t €]0, +-o0[

0 ~ 0 —ipx ou —ipx

aut(p) = & JR U(t,X)e PX dx j JR&(t,X)e PX dx (ED2)
ou 24 PR

= E(t’ P) N —’ﬁ(h p) TP ue(p).- (1)

L'égalité 2 est la dérivation de I'intégrale a parametre t (p fixé), I'égalité 4
suit de i x(ES) et I'égalité 5 de la double application de la formule pour la
transformée de Fourier d'une dérivée en la variable spatiale x.
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L'équation de Schrodinger (I11)

Donc ajoutant la condition initiale dp(p) = V(p) a I'équation différentielle
(ED2) de variable t (toujours pour p fixé), on obtient d:(p) = e?*t¥(p).
En particulier, comme p?t est réel, |d:(p)| = |V(p)|. Ainsi, utilisant aussi le
théoreme de Plancherel I'énergie §; |u¢(x)[?dx est indépendante du temps

car
| tuetaPax = o= [ 1) do =5 [ o6 dp = [ 1viPax.
R 27T R 27T R R

5 février 2024

Cours 8. Transformée de Fourier et Applicatic

Mathématiques 4



L'équation de Schrodinger (V)

Comme pour I'équation de la chaleur, cette formule multiplicative en
Fourier suggere que la solution soit donnée pour t > 0 par une
convolution. Il s'avere que c'est bien le cas

_,-ﬁ
u(t,x) = st dy .

J ViX —
ATt
Remarquons tout d’abord qu’'on peut formellement écrire le noyau

1

e
e 4+/4rt
g/ —57(y). Concernant le sens de cette intégrale, remarquez également

qu'il s'agit d’une intégrale oscillante, dont a on a essentiellement vérifié la
_ _1
convergence pour v =1et t = .

2
iy .. e
e "% avec lequel on convole la condition initiale v comme

Mathématiques 4 Cours 8. Transformée de Fourier et Applicatic 5 février 2024



Le principe d'incertitude (1)

En physique, ce principe donne une limitation théorique a la précision a
laquelle on peut connaftre a la fois la position et la quantité de
mouvement d'une particule.

Etant donnée une particule dont la position suit une densité de probabilité
f, alors la position moyenne de la particule est donnée par |'espérance

xo := §g xf(x)dx € R. Une facon de mesurer alors I'écart moyen de cette
particule par rapport a cette position moyenne est donné par la variance ou
incertitude donnée par o2 := { (x — x0)?f(x)dx. Essentiellement, o = 0
dans la cas déterministe d'une particule en xg avec probabilité 1, i.e.
f=0x-
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Le principe d'incertitude (I1)

En physique quantique, si cette distribution de position est donnée en
général par f(x) = [¢(x)|?, alors la distribution du moment est donnée par
lb(p)|?/(27) de sorte que la variance ou incertitude du moment est
donnée par 2L {,(p — po)2[(p)|2dp olt po = 2§, plib(p)[2dp. Dans la
suite, on prendra pour simplifier x; = pp = 0. Attention que les constantes
explicites apparaissant dans cette section dépendent de la normalisation
(souvent différente en physique) choisie pour définir la transformée de
Fourier. D'autre part, dans ces applications en physique quantique, la
constante de Planck % joue un réle dimensionnel, mais elle n'apparait pas
en général dans les énoncés mathématiques ol I'on préfére travailler en
variables adimensionnées.
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Localisation

Nous avons déja évoqué le principe (vague pour l'instant) suivant : plus
une fonction est localisée, plus sa transformée de Fourier est "étalée”. Par
exemple, nous avons vu que la transformée de Fourier d’une indicatrice
%1[_1,1] est la fonction sinc qui ne décroit pas trés vite vers O au sens ou
elle n'est pas intégrable en +00. Une autre manifestation plus quantitative
de ce principe est le point concernant le changement d'échelle : pour

f € L1(R) donnée, si

VxeR, f-(x) = %f (g)

pour € > 0, alors f;(p) = f (ep). Dans le cas ol g f = 1, nous avons vu
que SR ~ = 1 également et que les f. se concentrent en 0 au sens ol

f- — 0o au sens des mesures quand £ — 0+ Le changement d’échelle
donne alors que les . s'étalent au sens obi £ — f(0) = =gf=1
simplement sur R. A la limite, on retrouve la propnété que la transformée
de Fourier d'une mesure dg de Dirac supportée en un seul point est la
fonction constante égale a 1 partout.
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Formalisation du principe

Notation : on note S(R) I'ensemble des fonctions ¢ € C* a décroissance
rapide, c’est 3 dire telles que toutes les fonctions x — [0 (x)|(1 + |x|?) 2
sont bornées sur R pour tout m, k € N. Ces propriétés de
décroissance/régularité et les formules calculatoires vues sur la transformée
de Fourier assurent que

YpeSMR) = PeSR).
On peut alors formaliser I'intuition ci-dessus dans le théoréme suivant (en

regardant les variances dans le cas de la position et du moment nuls en
moyenne).
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Théoreme
[Principe d'incertitude d'Heisenberg] Soit 1) € S(R). Alors on a

(], |w<x>|2dx)2 <2 ([ weora) ([ #1owPRap)

De plus, on a égalité si et seulement si ¢(x) = ae— >’ pour des constantes
ae C et b> 0 données.

v
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Démonstration (1)

On peut tout d'abord observer que, pour be R, x — e > est dans S(R)
si et seulement si b > 0.

On commence par intégrer par parties en écrivant
| 1GaRax = [ wGIax = [xwGOP] % = | x (00500 + i)
R R R
=0+ ZJ —Re (x1(x)¢/(x)) dx, (2)
R
en observant que
(#0090 = (& (<)) + DT () = 2Re (BT ()

que x|¥(x)|?> — 0 quand x — +00, car ¥ € S(R) implique que
x > x2[p’(x)|? est bornée sur R, et remarquant enfin que x est réel.
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Démonstration (I1)

Indépendamment, on peut écrire

J —Re (x¢(x)¢'(x)) dx| <
R

f‘—Re xh(x)P (x)) | dx < f\xw (x)|
(3)

utilisant d'abord | § f] < {|f], puis que | — Re(z)| < |z| pour tout z € C.
Maintenant, utilisant I'inégalité de Cauchy-Schwarz, on a

X ()9 (x)] dx 2< xib (x)|* dx W ()Pdx | . (4)
(. ) = ([oecor) ([ orcores)

Enfin, on utilise le Théoreme de Plancherel, puis la formule sur la
transformée de Fourier d'une dérivée ¢'(p) = ipth pour écrire

, 1
| weopa = -

En mettant (2), (3), (4) et (5) bout a bout, on obtient bien I'inégalité
souhaitée.

TZ’(p)‘2 dp = % JR lipb(p)Pdp.  (5)
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Démonstration (I11)

Preuve de I'inégalité de Cauchy-Schwarz.

Pour f,g : R — C mesurables, la fonction polynémiale de degré 2 :
£ | (1FG01 + tlg))? o
¢ f g(x |2dx+2tJ I£(x) |dx+f £ () |2
est positive sur R, donc a au plus une racine et son discriminant A <0 :

(o) ([ o) ([ o).

pour peu que toutes les intégrales convergent.
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Démonstration (1V)

En inspectant les cas d'égalité de toutes les inégalités de la preuve

ci-dessus, montrer qu’on a égalité seulement si c réel et < 0 tel que
o 2

V' (x) = exip(x), puis que ¥(x) = ae " avec ¢ = —2b et a€ C.
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