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1. INTRODUCTION
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Parmi ses contributions majeures, Joseph Fourier a introduit |'équation de
la chaleur et a montré que les solutions de cette équation peuvent s'écrire
comme sommes de séries trigonométriques bien choisies qui portent son
nom depuis : les séries de Fourier.

Du point de vue des applications, les séries de Fourier sont un outil
fondamental en traitement du signal; elles peuvent aussi étre considérées
comme le premier pas vers la théorie moderne du traitement de
I'information (FFT , ondelettes, JPEG, Hubble —"sparse data”). Mais
méme du point de vue théorique, elles sont au coeur de pans entiers de
mathématiques contemporaines, non seulement en analyse, mais aussi en
théorie des nombres.
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Considérons une barre homogene de longueur finie L. On s'intéresse a
déterminer la température u(x, t) de la barre au point x et a l'instant t.

On impose que la température est toujours nulle! aux extrémités
(conditions de bord) et qu'a l'instant t = 0, elle est donnée par une
fonction ¢ : [0, L] — R (condition initiale).

L'équation qui régit la température u(x, t) en chaque point x a un instant
t > 0 est |I'équation de la chaleur, ici en dimension 1 :

ou 0%u
(E) E(X7 t)—Dﬁ(X7 t),

ou D > 0 est le coefficient de diffusion.

1. On suppose en fait qu'elle est toujours égale aux extrémités a une constante Ty,
puis nulle, quitte a prendre Top comme température de référence.
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En cherchant des solutions particulieres a variables séparées, i.e. de la
forme u(x, t) = f(x)g(t), on aboutit aprés calcul a des solutions de (E)

de la forme ) o
up(x,t) = bysin (n%x) exp ( 7an Dt)

ounecNet b, €R.
Ces solutions ont une forme commode a Vvérifier en injectant. Les entiers
n € N apparaissent afin de satisfaire les conditions de bord.

L'équation (E) est linéaire au sens ou on a un certain " principe de
superposition” : la somme ou un multiple de fonctions de la forme
précédente reste encore solution de (E). En passant aux sommes d'un
nombre infini, donc aux séries, on peut chercher des solutions de la forme

Z by sin (—x) exp < L22 2Dt)
avec o(x) = u(x,0) = i" by, sin (n%x) .
n=0
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Les séries de Fourier sont des séries de fonctions, qui servent a décomposer
une fonction périodique comme " combinaison linéaire” de fonctions
périodiques plus simples, de la forme cos(nwx) ou sin(nwx), c'est a dire
comme somme d'une série de la forme

Z(a,, cos(nwx) + bpsin(nwx)).
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2. SERIES TRIGONOMETRIQUES )
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Définition 1
On appelle série trigonométrique toute série de fonctions de la forme

+o00

ao .

> + E l(a,, cos(nwx) + by sin(nwx)),
n=

ol x €R, w> 0 et (a,) et (by) sont des suites réelles ou complexes.

On dit que la série est réelle si (a,) et (b,) sont des suites réelles.
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Soit T # 0. Une fonction f : R — R est dite T-périodique si pour tout
x €R, f(x+ T) = f(x). On dit alors que T est une période de .

Le plus petit T > 0 vérifiant la propriété précédente (s'il existe) est parfois
appelé la période de f.

Pour w > 0 fixé, la fonction x +— cos(nwx) est périodique de période
_ 27

T=2

On a bien en effet

cos(nw(x + 27 /w)) = cos(nwx + 2nm) = cos(nwx).
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Supposons que la série

a .
?O + ;(an cos(nwx) + by sin(nwx))

converge simplement sur R vers f, donc donnée par

f(x) = ? + Z(an cos(nwx) + by sin(nwx)) .

n>1

Comme ces fonctions sin(nwx) et cos(nwx) sont 2Z-périodiques, la somme
f est également 2f—périodique. En effet, on a pour tout n € N

cos(nw(x + 27 /w)) = cos(nwx), sin(nw(x + 27 /w)) = sin(nwx)

et donc par passage a la limite que f (X + %r) = f(x), et f est bien
2f—périodique.
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Convergence

Proposition 1

Si les séries numériques ) a, et ) b, sont absolument convergentes alors
la série trigonométrique

ao .
> + ;(an cos(nwx) + by sin(nwx))

est normalement convergente sur R.

En effet, pour tout x € R et n € N, I'inégalité triangulaire donne

|an cos(nwx) + bpsin(nwx)| < |an| + |bnl.
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Ecriture complexe

Considérons une série trigonométrique réelle
ag .
(1) > + Z(an cos(nwx) + by sin(nwx)).
n>1
En utilisant les formules d'Euler
einwx 4 efinwx

5 , sin(nwx) = o

einwx _ efinwx
cos(nwx) =

la série (1) s'écrit

Mathématiques 4
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Ecriture complexe

inwx —inwx inwx —inwx
e +e e —e

ao
? + Z (a,, > + b,-, 57

ou encore " b
40 inwx dn — 1Bn —inwx dn T 1B
- e —_— e _— ).

Posons donc
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Ecriture complexe

Alors la série (1) devient

o0
CO _"_ E (Cneln(/JX _"_ C_nefanJX)

n=1

00 [e's)
=co+ } :Cnemwx + } :Cf,,e_mwx)
n=1 n=1

00 n=-1
= q +§ :Cnemwx + § : Cnemwx
n=1 —00

— E CneInLUX.

nez

La derniere expression est appelée la forme complexe de la série
trigonométrique (1).
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Calcul des coefficients a,,, b,

Considérons une série trigonométrique réelle

% T nz;l(an cos(nwx) + by sin(nwx))

convergeant uniformément sur R vers la fonction f donnée par

(1) f(x)= % + Z(an cos(nwx) + by sin(nwx)).
n>1

On souhaite calculer/identifier les coefficients a,, et b, en fonction de f,
(un peu) comme dans le cas des fonctions développables en séries entiéres.
Ceci donnerait en particulier I'unicité d'une telle décomposition de f.
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Soit p € N, fixé. En multipliant les deux c6tés de I'égalité (1) par
cos(pwx), on a

f(x) cos(pwx) = % cos(pwx)

+ Z ap cos(nwx) cos(pwx) + by sin(nwx) cos(pwx)
n>1

. On multiplie aussi les deux cotés de I'égalité (1) par sin(pwx) pour écrire

f(x)sin(pwx) = % sin(pwx)

+ Z ap cos(nwx) sin(pwx) + by sin(nwx) sin(pwx)
n>1
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Calcul des coefficients a,,, b,

Comme la série converge uniformément, on peut intégrer terme a terme

27w
/ f(x) cos(pwx) dx =
0

27 Jw
/ a cos(pwx) dx
0 2

27w 27w
+ Z a,,/o cos(nwx) cos(pwx) dx + b,,/o sin(nwx) cos(pwx) dx.
n>1

Mathématiques 4 Séries de Fourier Printemps 2026



Calcul des coefficients a,,, b,

27w
/ f(x)sin(pwx) dx =
0

27 Jw
/ Sl sin(pwx) dx
0 2

27 Jw 27w
+ Z a,,/o cos(nwx) sin(pwx) dx + b,,/o sin(nwx) sin(pwx) dx.
n>1
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Il reste donc a calculer pour tout n € N les quantités

2m Jw 2 fw
/ cos(nwx) cos(pwx) dx, / sin(nwx) sin(pwx) dx
0 0

27w 27 Jw
/ sin(nwx) cos(pwx) dx / cos(nwx) sin(pwx) dx.
0 0
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Calcul des coefficients a,,, b,

Montrer que

2mfw 0 sip#n
/0 cos(nwx) cos(pwx) dx = { oo Smer

2mfw : 0 sip#n
/0 sin(nwx) sin(pwx) dx = { ol &l peg

27w
/ cos(nwx) sin(pwx) dx = 0.
0
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Calcul des coefficients a,,, b,

Apres substitution, on obtient donc

) 27 Jw

ap = ;/0 f(x) cos(pwx) dx,
w 27w

by — ;/0 f(x) sin(pwx) dx.

Mathématiques 4 Séries de Fourier Printemps 2026 21/55



Calcul des coefficients a,,, b, : conclusion

Considérons toujours une série trigonométrique réelle

% + Z(an cos(nwx) + by sin(nwx))

n>1

convergeant uniformément sur R vers sa somme f donnée par

f(x) = % + Z(an cos(nwx) + by sin(nwx)).

Alors pour tout n € N

an

Mathématiques 4

n>1

21 fw
/

2 Juw
/

w
s

f(x) cos(nwx) dx,

f(x)sin(nwx) dx.
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En écriture complexe

On obtient de fagon similaire

27 Jw

w o
f(x)e™ "™ dx, pour tout n € Z.

Ch = —
" 27T0
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3. SERIES DE FOURIER J
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Séries de Fourier

Définition (Séries de Fourier)

Soit f : R — R une fonction T-périodique ol on pose T = %” intégrable

sur tout intervalle fermé et borné. On appelle série de Fourier associée a f,
la série trigonométrique

o .
>+ Z(an cos(nwx) + by sin(nwx)),

n>1
ou

s 27 Jw

ap = / f(x) cos(nwx) dx,
T Jo
w 27w

b, = / f(x) sin(nwx) dx,
T Jo

(appelés coefficients de Fourier).
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Séries de Fourier

On peut écrire les coefficients en fonction de la période T

T

ap = %/0 f(x) cos (nz%rx) dx,
T

b, = %/0 f(x)sin (nz?ﬂx) dx.
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Séries de Fourier : exemple

Considérons la fonction 2m-périodique suivante, appelée la fonction
créneau :

1 pour x € [0,7]

f:R—>R, f(x)= { 0 pour x €]m, 27].
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Séries de Fourier : exemple

Calculons les coefficients de Fourier a, et b, de f.

2 2 1 s
ap=— f(x)dx:—/ ldx=1;
21 0 ™ Jo
pour n > 1,
2 [T 17 1(si m
an = o A f(x) cos(nx) dx = ;/0 cos(nx) dx = = [sm(nnx)]o =0;
2w ™ — s
fop = 2 f(x)sin(nx) dx = l/ sin(nx) dx = l[ cos(nx)]
27 Jo T Jo T n 0
1-(=1)"
- an
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Séries de Fourier : exemple

D’ou on obtient la série de Fourier

et comme (1 —(—1)") = 0 si n est pair et (1 — (—1)") = 2 si n est impair,
on peut écrire la série sous la forme

1 2
§+kzzomsm((2k+1)x).
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Séries de Fourier : exemple

Si on calcule la somme partielle pour des valeurs de n de plus en plus

grande
n

_(_1)k
i) = % I Z A=Y sin(kx)

Tk
k=1

on constate une convergence vers la fonction f, comme le montre le dessin
suivant :

1) \ /\ £(2)
7 S

n=10 n = 100

f#)
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Séries de Fourier : conve

Donc, d'une facon général, étant donnée une fonction f et sa série de
Fourier, on peut se demander :
o La série de Fourier associée a f est-elle convergente en un certain
sens ?
@ En cas d'une telle convergence, peut-on aussi dire que la série
converge vers f 7
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Séries de Fourier : convergence

Si la série de Fourier associée a f converge simplement, on note sa somme

St :

a :
Sf(x) = 50 + Z(an cos(nwx) + by sin(nwx)).
n>1
Il existe des fonctions, méme continues (périodiques), dont la série de

Fourier diverge au moins en un point x, de sorte que I'égalité
Sf(x) = f(x) n’a méme pas de sens.

.

Cependant, un résultat dii a Fejér (allant au dela des ambitions de ce
cours) dit cependant que si f est continue et que sa série de Fourier
converge en x, alors on a 5f(x) = f(x).

v
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Séries de Fourier : convergence

Définition 3

Une fonction f admet une discontinuité de premiére espéce en un point Xp
si les limites a droite et a gauche en xp existent et sont finies.

Définition 4
Une fonction f : [a, b] — R est continue par morceaux sur [a, b] s'il existe
une subdivision ag = a< a; < a» < --- < a, = b telle que f est continue

sur chaque intervalle ]a;, a;11[ avec des limites finies en a,fr et a

+1
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Remarque

Une fonction f : [a, b] — R est continue par morceaux sur [a, b] si et
seulement si elle n’a qu'un nombre fini de points de discontinuité sur [a, b]
et elles sont toutes de premiere espéece.

Soit f : R — R continue par morceaux et x € R. On note

f(xt) = hli)r‘(r)]Jr f(x+h); f(x)= hin(")n+ f(x— h).
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Définition

Soit f : [a, b] — R une application. On dit que f est de classe C* par
morceaux s'il existe une subdivision a = a9 < a1 < - -+ < a, = b telle que
pour tout i € {0,--- ,n— 1}, f est de classe C! sur ]a;,a; 41 et f et '
possedent des limites finies a gauche et a droite en a; et aj11.
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Théoreme de Jordan-Dirichlet (Convergence normale)

Soit f : R — R une fonction T-périodique. Supposons que f est de classe
C! par morceaux sur tout intervalle fermé et borné [a, b] C R. Alors pour
tout x € R, la série de Fourier associée a f converge et on a

SF(x) = 3(F(x) + ().

En particulier, en tout point x ol f est continue, la somme de la série de
Fourier de f est f(x).

Enfin la convergence est normale (et donc uniforme) sur tout intervalle
fermé et borné ou la fonction f est continue. Si de plus f est continue sur

R, on a méme
—+oo

Z(’3n| + |bs|) converge.

n=1

L’'ENSEMBLE DES FONCTIONS ETUDIEES EN COURS ET EN TD
SERONT C! PAR MORCEAUX.
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Exemple

|

Reprenons la fonction créneau

1 pour x € [0, 7]

f:Rg)Ra f(X):{ 0 pourXE]Tfazﬂ'[’

dont nous avons calculé la série de Fourier

+Zﬂ(zk sin((2k + 1)x).

On peut donc écrire

+Z7r(2k sin((2k + 1)x).
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On voit que f est continue par morceaux sur tout intervalle [a, b] (comme
f est 2m-periodique, il suffit de le vérifier sur une période [0, 27]) et qu'elle
est aussi de classe C! par morceaux (exercice). Par conséquent, on a pour
tout x € R\ {mn|m € Z},

f 1 S 2 in((2k +1
(x)—2+;)ﬂ(2k+l)sm(( + 1)x)

et pour x =mm, me Z

1 1 X 2
ISt Gn(@k+ 1))
2= 2 +;)7r(2k+1) sin((2k +1)x)
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Périodicité et intégrales

Soit f = R — R une fonction T-périodique. Alors pour tout a € R, on a

/OTf(X) dx = /aa+T f(x) dx.

On a
/:+Tf(x) dx:/ao £(x) dx-i-/OTf(x) dx+/a+Tf(x) o

T

Or en utilisant le changement de variable t = x — T, on a

a+T a a
/ f(x) dx :/ f(t+T)dt= / f(x) dx, d'ou le résultat.
T 0 0
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Périodicité et intégrales

Donc pour le calcul des coefficients de Fourier, on a

_2 / s (n—x> _2 / o (n2$x> dx,
_2 / el (f%&) fro— 2 / s (f%&) dx,

et pour les fonctions 2w-périodiques, en prenant a = —,
1 2 1 ™
Sy = —/ f(x) cos(nx) dx = —/ f(x) cos(nx) dx,
m™Jo L

b, = 1 /0% f(x)sin(nx) dx = 1 /7r f(x)sin(nx) dx.

T J—m
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Parité et intégrales

Rappel

Soit f : R — R une fonction. On dit que
o f est paire si f(—x) = f(x) pour tout x € R,

o f est impaire si f(—x) = —f(x) pour tout x € R.

Propriété
Soit g : R — R une fonction Riemann-intégrable.

/_ o) e =2 /Oag(x) dx.

@ Si g est impaire alors /a

@ Si g est paire alors

g(x) dx =0.

—a
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Parité et intégrales

Conséquence

@ Si f est paire alors

ap = E/ f(x) cos(nx) dx,
0

™

b, =0, pour tout n € N.

@ Si f est impaire alors

ap, =0, pourtoutneN,

2 [T .
b, = —/0 f(x)sin(nx) dx.
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Exemples

(1) Soit 0 < @ < 7. On considere la fonction f : R — R périodique de
période 27 définie par

1, si —a<x<aq
0, sinon.

Vx € [-m, 7], f(x) = {

Calculons les coefficients de Fourier de la fonction f.
Vérifions que f est paire. Si |x| < a, alors f(—x) = f(x) =1 et si |x| > «,
alors f(—x) = f(x) = 0.

Comme f est paire, b, = 0 et donc on calcule ag et a,.

1 [7 2 (7 2 (¢ 2
30:/ f(x)dxz/ f(x)dxz/ ldx = 22,
™ J_x ™ Jo ™ Jo ™

Mathématiques 4 Séries de Fourier Printemps 2026 43 /55



1 ™
ap = — f(x) cos(nx) / f(x) cos(nx)dx

L

2S|n(na)‘

2 «
— / cos(nx)dx =
0

T m™n

Calculons la somme Sf de la série de Fourier. La fonction f a deux points
de discontinuité sur [~m, 7] : —a, . Comme f est C! par morceaux et
que f est continue sur [—m, 7| \ {—a, a}, on a d'aprés le théoreme de
Jordan-Dirichlet que, pour tout x € [—m, 7] \ {—«, a},

+oo .
f(x) = Sf(x) = % = Z 2sin(na) cos(nx) et que

Sty = (EAIVEA=0T) 1 gy Ao+ o) 1
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(2) On consideére la fonction f : R — R, 27-périodique définie par
Vx € [—m,x], f(x) = |x].

Calculons les coefficients de Fourier de la fonction f. Comme f est paire,

b, = 0 et donc on calcule ag et a,.

1 [ 2 [T 2 (7
30:/ f(x)dX:/ f(x)dxz/ x dx = .
T J_r T Jo ™Jo

2 [T 0 si n est pair;
an = / xcos(nx) dx =4 4 : e
0 —2, sin est impair.
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Calculons la somme Sf de la série de Fourier. Comme f est C' par
morceaux, et comme f est continue sur R, d'apres le théoreme de
Jordan-Dirichlet,

+o00
s 4
f(x) = Sf(x) = = Z WCOS(QH + 1)x), pour tout x € R

Application. En prenant x = 0, on obtient

O_f(o)_ﬂ-_4§1
N 2 w4 (2n+1)?
et donc
R .
(2n+1)2 8"

n=1
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Applications définies sur un intervalle fermé et borné

Soit f : [a,a+ 27] — R une application continue par morceaux telle que

f(a) = f(a+ 2m). Alors il existe une unique fonction g : R — R,
2m-périodique et continue par morceaux qui coincide avec f sur [a, a + 27].

On translate le graphe de f sur les intervalles de la forme
[a+ 2k, a+ 2(k + 1)7]| qui recouvrent R. On a

R= U [a+2km, a+2(k+1)~n], et on définit g sur [a+2km, a+2(k+1)7]
keZ

par g(x) = f(x — 2km)

On vérifie bien que g est 27-périodique et coincide sur [a, a + 27] avec
f. Ol

v
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Applications définies sur un intervalle fermé et borné

Développons en série de Fourier la fonction e* sur l'intervalle |0, 7[. On
définit

e si x€|0,w

=1 & o el

e si x €] —m,0].
Alors f vérifie les conditions de la propriété précédente et donc il existe
une fonction g : R — R, 27m-périodique qui coincide avec f sur | — 7, .
La fonction g est paire et donc on calcule ag et (en intégrant par parties
deux fois avec a chaque fois une dérivation sur €*) ap.

1 /7 2 [T 2 [T 2(e™ -1
ap = / g(x)dx = / f(x)dx = / e dx = M.
™ ™ Jo 0

- m s

1 T 2 g _1 n,am 1
a, = / g(x) cos(nx)dx = / e* cos(nx) dx = 2L.
0

T ) v 1+ n?
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Applications définies sur un intervalle fermé et borné

Donc pour tout x €]0,7[, on a

e = 22( 11):_ ﬂ2_ cos(nx).
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Séries de Fourier et dérivation

Remarque. Il est utile de connaitre la propriété suivante, conséquence
directe de la définition des a,, b, et d'une intégration par parties :

Proposition

. . 7 » . . 2 1
Si f est continue, L-périodique (avec toujours L = 27) et C! par
morceaux, alors pour n € N*, on a :

an(f') = nw by(f), bn(f') = —nw a,(f).
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Relations de Bessel-Parseval

Théoreme 1 (Bessel-Parseval)

Soit f : R — R une fonction T-périodique C! par morceaux, avec
T = 2w—” > 0. Alors, Z |cnl?, Z(af, + b2) sont convergentes et on a

n>0 n>1
(Egalité de Parseval)

1 T
el =2+ Z ) =1 [ fp
neZ 0

ou les a,, b, sont les coefficients de la série de Fourier associée a f et les
cn sont les coefficients en écriture complexe.
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Relations de Bessel-Parseval

Remarque

Donc si f est 2m-périodique (et continue par morceaux ou plus
généralement Riemann intégrable), on a

et = 2 lfﬂbz - [ 02 o
o " 2 2 o 21 Jo '

L'une des beautés de cette identité est qu'elle a lieu méme si la série de
Fourier diverge ou a une somme différente de f en certains point !
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Relations de Bessel-Parseval

Exemple 1 (suite)

Reprenons la fonction  : R — R, périodique de période 27, définie par

i —a<x<aq;
VXG[—W,W],f(X):{l’ BooAsx=a

0, sinon.
2a 2sin(na :
ou0<a<m.Onaa=—, a,= # En appliquant la formule
T ™

de Parseval, on obtient :
2 ), us
ac 1 4sin“(na) 1 / s o'
2 * 2 n§>:1 m2n2 27 J_. (x)dx T’

puis
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Relations de Bessel-Parseval

Exemple 2 (suite)

Reprenons la fonction f : R — R, 27-périodique définie par

Vx € [—m, 7], f(x) = |x].

_‘2, si n est impair.

0 si n est pair;
Onaa=m, a,= { ’ P
En appliquant I'égalité de Parseval, on a

2 +oo T
2 1 16 1 .o
_ — _—_— d = —
4 +2nz:(:)7r2(2n+1)4 o ) T3

—T

et donc
+o0o
S
2n+1)* 96
n=0
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MERCI DE VOTRE ATTENTION !
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