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1. Introduction
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Parmi ses contributions majeures, Joseph Fourier a introduit l’équation de
la chaleur et a montré que les solutions de cette équation peuvent s’écrire
comme sommes de séries trigonométriques bien choisies qui portent son
nom depuis : les séries de Fourier.

Du point de vue des applications, les séries de Fourier sont un outil
fondamental en traitement du signal ; elles peuvent aussi être considérées
comme le premier pas vers la théorie moderne du traitement de
l’information (FFT , ondelettes, JPEG, Hubble →”sparse data”). Mais
même du point de vue théorique, elles sont au cœur de pans entiers de
mathématiques contemporaines, non seulement en analyse, mais aussi en
théorie des nombres.
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Considérons une barre homogène de longueur finie L. On s’intéresse à
déterminer la température u(x , t) de la barre au point x et à l’instant t.

On impose que la température est toujours nulle 1 aux extrémités
(conditions de bord) et qu’à l’instant t = 0, elle est donnée par une
fonction φ : [0, L] → R (condition initiale).

L’équation qui régit la température u(x , t) en chaque point x à un instant
t > 0 est l’équation de la chaleur, ici en dimension 1 :

(E )
∂u

∂t
(x , t) = D

∂2u

∂x2
(x , t),

où D > 0 est le coefficient de diffusion.

1. On suppose en fait qu’elle est toujours égale aux extrémités à une constante T0,
puis nulle, quitte à prendre T0 comme température de référence.
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En cherchant des solutions particulières à variables séparées, i.e. de la
forme u(x , t) = f (x)g(t), on aboutit après calcul à des solutions de (E )
de la forme

un(x , t) = bn sin
(nπ

L
x
)
exp

(
−π2n2

L2
Dt

)
où n ∈ N et bn ∈ R.
Ces solutions ont une forme commode à vérifier en injectant. Les entiers
n ∈ N apparaissent afin de satisfaire les conditions de bord.

L’équation (E ) est linéaire au sens où on a un certain ”principe de
superposition” : la somme ou un multiple de fonctions de la forme
précédente reste encore solution de (E ). En passant aux sommes d’un
nombre infini, donc aux séries, on peut chercher des solutions de la forme

u(x , t) =
+∞∑
n=0

bn sin
(nπ

L
x
)
exp

(
−π2n2

L2
Dt

)
,

avec φ(x) = u(x , 0) =
+∞∑
n=0

bn sin
(nπ

L
x
)
.
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Les séries de Fourier sont des séries de fonctions, qui servent à décomposer
une fonction périodique comme ”combinaison linéaire” de fonctions
périodiques plus simples, de la forme cos(nωx) ou sin(nωx), c’est à dire
comme somme d’une série de la forme∑

(an cos(nωx) + bn sin(nωx)).
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2. Séries trigonométriques
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Définition 1

On appelle série trigonométrique toute série de fonctions de la forme

a0
2

+
+∞∑
n=1

(an cos(nωx) + bn sin(nωx)),

où x ∈ R, ω > 0 et (an) et (bn) sont des suites réelles ou complexes.

On dit que la série est réelle si (an) et (bn) sont des suites réelles.

Mathématiques 4 Séries de Fourier Printemps 2026 8 / 55



Périodicité

Rappel

Soit T ̸= 0. Une fonction f : R → R est dite T-périodique si pour tout
x ∈ R, f (x + T ) = f (x). On dit alors que T est une période de f .

Le plus petit T > 0 vérifiant la propriété précédente (s’il existe) est parfois
appelé la période de f .

Exemple

Pour ω > 0 fixé, la fonction x 7→ cos(nωx) est périodique de période
T = 2π

ω .
On a bien en effet

cos(nω(x + 2π/ω)) = cos(nωx + 2nπ) = cos(nωx).
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Périodicité

Supposons que la série

a0
2

+
∑
n≥1

(an cos(nωx) + bn sin(nωx))

converge simplement sur R vers f , donc donnée par

f (x) =
a0
2

+
∑
n≥1

(an cos(nωx) + bn sin(nωx)) .

Comme ces fonctions sin(nωx) et cos(nωx) sont 2π
ω -périodiques, la somme

f est également 2π
ω -périodique. En effet, on a pour tout n ∈ N

cos(nω(x + 2π/ω)) = cos(nωx), sin(nω(x + 2π/ω)) = sin(nωx)

et donc par passage à la limite que f
(
x + 2π

ω

)
= f (x), et f est bien

2π
ω -périodique.
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Convergence

Proposition 1

Si les séries numériques
∑

an et
∑

bn sont absolument convergentes alors
la série trigonométrique

a0
2

+
∑
n≥1

(an cos(nωx) + bn sin(nωx))

est normalement convergente sur R.

En effet, pour tout x ∈ R et n ∈ N, l’inégalité triangulaire donne

|an cos(nωx) + bn sin(nωx)| ≤ |an|+ |bn|.
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Écriture complexe

Considérons une série trigonométrique réelle

(1)
a0
2

+
∑
n≥1

(an cos(nωx) + bn sin(nωx)).

En utilisant les formules d’Euler

cos(nωx) =
e inωx + e−inωx

2
, sin(nωx) =

e inωx − e−inωx

2i

la série (1) s’écrit
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Écriture complexe

a0
2

+
∑
n≥1

(
an

e inωx + e−inωx

2
+ bn

e inωx − e−inωx

2i

)
ou encore

a0
2

+
∑
n≥1

(
e inωx

an − ibn
2

+ e−inωx an + ibn
2

)
.

Posons donc

cn =
an − ibn

2
et c−n = c̄n =

an + ibn
2

.
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Écriture complexe

Alors la série (1) devient

c0 +
∞∑
n=1

(cne
inωx + c−ne

−inωx)

= c0 +
∞∑
n=1

cne
inωx +

∞∑
n=1

c−ne
−inωx)

= c0 +
∞∑
n=1

cne
inωx +

n=−1∑
−∞

cne
inωx

=
∑
n∈Z

cne
inωx .

La dernière expression est appelée la forme complexe de la série
trigonométrique (1).
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Calcul des coefficients an, bn

Considérons une série trigonométrique réelle

a0
2

+
∑
n≥1

(an cos(nωx) + bn sin(nωx))

convergeant uniformément sur R vers la fonction f donnée par

(1) f (x) =
a0
2

+
∑
n≥1

(an cos(nωx) + bn sin(nωx)).

On souhaite calculer/identifier les coefficients an et bn en fonction de f ,
(un peu) comme dans le cas des fonctions développables en séries entières.
Ceci donnerait en particulier l’unicité d’une telle décomposition de f .
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Soit p ∈ N, fixé. En multipliant les deux côtés de l’égalité (1) par
cos(pωx), on a

f (x) cos(pωx) =
a0
2
cos(pωx)

+
∑
n≥1

an cos(nωx) cos(pωx) + bn sin(nωx) cos(pωx)

. On multiplie aussi les deux côtés de l’égalité (1) par sin(pωx) pour écrire

f (x) sin(pωx) =
a0
2
sin(pωx)

+
∑
n≥1

an cos(nωx) sin(pωx) + bn sin(nωx) sin(pωx)

.
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Calcul des coefficients an, bn

Comme la série converge uniformément, on peut intégrer terme à terme∫ 2π/ω

0
f (x) cos(pωx) dx =

∫ 2π/ω

0

a0
2
cos(pωx) dx

+
∑
n≥1

an

∫ 2π/ω

0
cos(nωx) cos(pωx) dx + bn

∫ 2π/ω

0
sin(nωx) cos(pωx) dx .
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Calcul des coefficients an, bn

∫ 2π/ω

0
f (x) sin(pωx) dx =

∫ 2π/ω

0

a0
2
sin(pωx) dx

+
∑
n≥1

an

∫ 2π/ω

0
cos(nωx) sin(pωx) dx + bn

∫ 2π/ω

0
sin(nωx) sin(pωx) dx .
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Il reste donc à calculer pour tout n ∈ N les quantités∫ 2π/ω

0
cos(nωx) cos(pωx) dx ,

∫ 2π/ω

0
sin(nωx) sin(pωx) dx

∫ 2π/ω

0
sin(nωx) cos(pωx) dx

∫ 2π/ω

0
cos(nωx) sin(pωx) dx .
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Calcul des coefficients an, bn

Exercice

Montrer que∫ 2π/ω

0
cos(nωx) cos(pωx) dx =

{
0 si p ̸= n

π/ω si p = n

∫ 2π/ω

0
sin(nωx) sin(pωx) dx =

{
0 si p ̸= n

π/ω si p = n∫ 2π/ω

0
cos(nωx) sin(pωx) dx = 0.
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Calcul des coefficients an, bn

Après substitution, on obtient donc

ap =
ω

π

∫ 2π/ω

0
f (x) cos(pωx) dx ,

bp =
ω

π

∫ 2π/ω

0
f (x) sin(pωx) dx .
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Calcul des coefficients an, bn : conclusion

Considérons toujours une série trigonométrique réelle

a0
2

+
∑
n≥1

(an cos(nωx) + bn sin(nωx))

convergeant uniformément sur R vers sa somme f donnée par

f (x) =
a0
2

+
∑
n≥1

(an cos(nωx) + bn sin(nωx)).

Alors pour tout n ∈ N

an =
ω

π

∫ 2π/ω

0
f (x) cos(nωx) dx ,

bn =
ω

π

∫ 2π/ω

0
f (x) sin(nωx) dx .
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En écriture complexe

On obtient de façon similaire

cn =
ω

2π

∫ 2π/ω

0
f (x)e−inωx dx , pour tout n ∈ Z.
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3. Séries de Fourier
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Séries de Fourier

Définition (Séries de Fourier)

Soit f : R → R une fonction T -périodique où on pose T = 2π
ω , intégrable

sur tout intervalle fermé et borné. On appelle série de Fourier associée à f ,
la série trigonométrique

a0
2

+
∑
n≥1

(an cos(nωx) + bn sin(nωx)),

où

an =
ω

π

∫ 2π/ω

0
f (x) cos(nωx) dx ,

bn =
ω

π

∫ 2π/ω

0
f (x) sin(nωx) dx ,

(appelés coefficients de Fourier).
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Séries de Fourier

On peut écrire les coefficients en fonction de la période T

an =
2

T

∫ T

0
f (x) cos

(
n
2π

T
x

)
dx ,

bn =
2

T

∫ T

0
f (x) sin

(
n
2π

T
x

)
dx .
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Séries de Fourier : exemple

Exemple

Considérons la fonction 2π-périodique suivante, appelée la fonction
créneau :

f : R → R, f (x) =

{
1 pour x ∈ [0, π]
0 pour x ∈]π, 2π[.
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Séries de Fourier : exemple

Calculons les coefficients de Fourier an et bn de f .

a0 =
2

2π

∫ 2π

0
f (x) dx =

1

π

∫ π

0
1 dx = 1;

pour n ≥ 1,

an =
2

2π

∫ 2π

0
f (x) cos(nx) dx =

1

π

∫ π

0
cos(nx) dx =

1

π

[sin(nx)
n

]π
0
= 0;

bn =
2

2π

∫ 2π

0
f (x) sin(nx) dx =

1

π

∫ π

0
sin(nx) dx =

1

π

[− cos(nx)

n

]π
0

=
1− (−1)n

πn
.
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Séries de Fourier : exemple

D’où on obtient la série de Fourier

1

2
+

+∞∑
n=1

(1− (−1)n)

πn
sin(nx)

et comme (1− (−1)n) = 0 si n est pair et (1− (−1)n) = 2 si n est impair,
on peut écrire la série sous la forme

1

2
+

+∞∑
k=0

2

π(2k + 1)
sin((2k + 1)x).
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Séries de Fourier : exemple

Si on calcule la somme partielle pour des valeurs de n de plus en plus
grande

Sn(x) =
1

2
+

n∑
k=1

(1− (−1)k)

πk
sin(kx)

on constate une convergence vers la fonction f , comme le montre le dessin
suivant :
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Séries de Fourier : convergence

Donc, d’une façon général, étant donnée une fonction f et sa série de
Fourier, on peut se demander :

La série de Fourier associée à f est-elle convergente en un certain
sens ?

En cas d’une telle convergence, peut-on aussi dire que la série
converge vers f ?
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Séries de Fourier : convergence

Notation

Si la série de Fourier associée à f converge simplement, on note sa somme
Sf :

Sf (x) =
a0
2

+
∑
n≥1

(an cos(nωx) + bn sin(nωx)).

Attention

Il existe des fonctions, même continues (périodiques), dont la série de
Fourier diverge au moins en un point x , de sorte que l’égalité
Sf (x) = f (x) n’a même pas de sens.

Culture

Cependant, un résultat dû à Fejér (allant au delà des ambitions de ce
cours) dit cependant que si f est continue et que sa série de Fourier
converge en x , alors on a Sf (x) = f (x).
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Séries de Fourier : convergence

Définition 3

Une fonction f admet une discontinuité de première espèce en un point x0
si les limites à droite et à gauche en x0 existent et sont finies.

Définition 4

Une fonction f : [a, b] → R est continue par morceaux sur [a, b] s’il existe
une subdivision a0 = a < a1 < a2 < · · · < an = b telle que f est continue
sur chaque intervalle ]ai , ai+1[ avec des limites finies en a+i et a−i+1.

Exemple
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Remarque

Une fonction f : [a, b] → R est continue par morceaux sur [a, b] si et
seulement si elle n’a qu’un nombre fini de points de discontinuité sur [a, b]
et elles sont toutes de première espèce.

Notation

Soit f : R → R continue par morceaux et x ∈ R. On note

f (x+) = lim
h→0+

f (x + h) ; f (x−) = lim
h→0+

f (x − h).
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Définition

Soit f : [a, b] → R une application. On dit que f est de classe C 1 par
morceaux s’il existe une subdivision a = a0 < a1 < · · · < an = b telle que
pour tout i ∈ {0, · · · , n − 1}, f est de classe C 1 sur ]ai , ai+1[ et f et f ′

possèdent des limites finies à gauche et à droite en ai et ai+1.
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Théorème de Jordan-Dirichlet (Convergence normale)

Soit f : R → R une fonction T -périodique. Supposons que f est de classe
C 1 par morceaux sur tout intervalle fermé et borné [a, b] ⊆ R. Alors pour
tout x ∈ R, la série de Fourier associée à f converge et on a

Sf (x) =
1

2
(f (x−) + f (x+)).

En particulier, en tout point x où f est continue, la somme de la série de
Fourier de f est f (x).
Enfin la convergence est normale (et donc uniforme) sur tout intervalle
fermé et borné où la fonction f est continue. Si de plus f est continue sur
R, on a même

+∞∑
n=1

(|an|+ |bn|) converge.

L’ENSEMBLE DES FONCTIONS ETUDIEES EN COURS ET EN TD
SERONT C 1 PAR MORCEAUX.
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Exemple

Reprenons la fonction créneau

f : R → R, f (x) =

{
1 pour x ∈ [0, π]
0 pour x ∈]π, 2π[,

dont nous avons calculé la série de Fourier

1

2
+

+∞∑
k=0

2

π(2k + 1)
sin((2k + 1)x).

On peut donc écrire

Sf (x) =
1

2
+

+∞∑
k=0

2

π(2k + 1)
sin((2k + 1)x).
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On voit que f est continue par morceaux sur tout intervalle [a, b] (comme
f est 2π-periodique, il suffit de le vérifier sur une période [0, 2π]) et qu’elle
est aussi de classe C 1 par morceaux (exercice). Par conséquent, on a pour
tout x ∈ R \ {mπ|m ∈ Z},

f (x) =
1

2
+

+∞∑
k=0

2

π(2k + 1)
sin((2k + 1)x)

et pour x = mπ, m ∈ Z

1

2
=

1

2
+

+∞∑
k=0

2

π(2k + 1)
sin((2k + 1)x).
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Périodicité et intégrales

Propriété

Soit f = R → R une fonction T -périodique. Alors pour tout a ∈ R, on a∫ T

0
f (x) dx =

∫ a+T

a
f (x) dx .

Preuve

On a ∫ a+T

a
f (x) dx =

∫ 0

a
f (x) dx +

∫ T

0
f (x) dx +

∫ a+T

T
f (x) dx

Or en utilisant le changement de variable t = x − T , on a∫ a+T

T
f (x) dx =

∫ a

0
f (t + T ) dt =

∫ a

0
f (x) dx , d’où le résultat.
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Périodicité et intégrales

Donc pour le calcul des coefficients de Fourier, on a

an =
2

T

∫ T

0
f (x) cos

(
n
2π

T
x

)
dx =

2

T

∫ a+T

a
f (x) cos

(
n
2π

T
x

)
dx ,

bn =
2

T

∫ T

0
f (x) sin

(
n
2π

T
x

)
dx =

2

T

∫ a+T

a
f (x) sin

(
n
2π

T
x

)
dx ,

et pour les fonctions 2π-périodiques, en prenant a = −π,

an =
1

π

∫ 2π

0
f (x) cos(nx) dx =

1

π

∫ π

−π
f (x) cos(nx) dx ,

bn =
1

π

∫ 2π

0
f (x) sin(nx) dx =

1

π

∫ π

−π
f (x) sin(nx) dx .
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Parité et intégrales

Rappel

Soit f : R → R une fonction. On dit que

f est paire si f (−x) = f (x) pour tout x ∈ R,
f est impaire si f (−x) = −f (x) pour tout x ∈ R.

Propriété

Soit g : R → R une fonction Riemann-intégrable.

Si g est paire alors ∫ a

−a
g(x) dx = 2

∫ a

0
g(x) dx .

Si g est impaire alors ∫ a

−a
g(x) dx = 0.
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Parité et intégrales

Conséquence

Si f est paire alors

an =
2

π

∫ π

0
f (x) cos(nx) dx ,

bn = 0, pour tout n ∈ N.

Si f est impaire alors

an = 0, pour tout n ∈ N,

bn =
2

π

∫ π

0
f (x) sin(nx) dx .
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Exemples

(1) Soit 0 < α < π. On considère la fonction f : R → R périodique de
période 2π définie par

∀x ∈ [−π, π], f (x) =

{
1, si − α ≤ x ≤ α;
0, sinon.

Calculons les coefficients de Fourier de la fonction f .
Vérifions que f est paire. Si |x | ≤ α, alors f (−x) = f (x) = 1 et si |x | > α,
alors f (−x) = f (x) = 0.

Comme f est paire, bn = 0 et donc on calcule a0 et an.

a0 =
1

π

∫ π

−π
f (x)dx =

2

π

∫ π

0
f (x)dx =

2

π

∫ α

0
1dx =

2α

π
.
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an =
1

π

∫ π

−π
f (x) cos(nx)dx =

2

π

∫ π

0
f (x) cos(nx)dx

=
2

π

∫ α

0
cos(nx)dx =

2 sin(nα)

πn
.

Calculons la somme Sf de la série de Fourier. La fonction f a deux points
de discontinuité sur [−π, π] : −α, α. Comme f est C 1 par morceaux et
que f est continue sur [−π, π] \ {−α, α}, on a d’après le théorème de
Jordan-Dirichlet que, pour tout x ∈ [−π, π] \ {−α, α},

f (x) = Sf (x) =
α

π
+

+∞∑
n=1

2 sin(nα)

πn
cos(nx) et que

Sf (−α) =
f ((−α)+) + f ((−α)−)

2
=

1

2
, Sf (α) =

f (α+) + f (α−)

2
=

1

2
.
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(2) On considère la fonction f : R → R, 2π-périodique définie par

∀x ∈ [−π, π], f (x) = |x |.

Calculons les coefficients de Fourier de la fonction f . Comme f est paire,

bn = 0 et donc on calcule a0 et an.

a0 =
1

π

∫ π

−π
f (x)dx =

2

π

∫ π

0
f (x)dx =

2

π

∫ π

0
x dx = π.

an =
2

π

∫ π

0
x cos(nx) dx =

{
0, si n est pair;
−4
πn2

, si n est impair.
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Calculons la somme Sf de la série de Fourier. Comme f est C 1 par
morceaux, et comme f est continue sur R, d’après le théorème de
Jordan-Dirichlet,

f (x) = Sf (x) =
π

2
−

+∞∑
n=1

4

π(2n + 1)2
cos((2n + 1)x), pour tout x ∈ R.

Application. En prenant x = 0, on obtient

0 = f (0) =
π

2
− 4

π

+∞∑
n=1

1

(2n + 1)2

et donc
+∞∑
n=1

1

(2n + 1)2
=

π2

8
.
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Applications définies sur un intervalle fermé et borné

Propriété

Soit f : [a, a+ 2π] → R une application continue par morceaux telle que
f (a) = f (a+ 2π). Alors il existe une unique fonction g : R → R,
2π-périodique et continue par morceaux qui cöıncide avec f sur [a, a+2π].

Preuve

On translate le graphe de f sur les intervalles de la forme
[a+ 2kπ, a+ 2(k + 1)π] qui recouvrent R. On a

R =
⋃
k∈Z

[a+2kπ, a+2(k+1)π], et on définit g sur [a+2kπ, a+2(k+1)π]

par g(x) = f (x − 2kπ)

On vérifie bien que g est 2π-périodique et cöıncide sur [a, a+ 2π] avec
f .

Mathématiques 4 Séries de Fourier Printemps 2026 47 / 55



Applications définies sur un intervalle fermé et borné

Exemple 3

Développons en série de Fourier la fonction ex sur l’intervalle ]0, π[. On
définit

f (x) =

{
ex si x ∈]0, π[
e−x si x ∈]− π, 0].

Alors f vérifie les conditions de la propriété précédente et donc il existe
une fonction g : R → R, 2π-périodique qui cöıncide avec f sur ]− π, π[.
La fonction g est paire et donc on calcule a0 et (en intégrant par parties
deux fois avec à chaque fois une dérivation sur ex) an.

a0 =
1

π

∫ π

−π
g(x)dx =

2

π

∫ π

0
f (x)dx =

2

π

∫ π

0
ex dx =

2(eπ − 1)

π
.

an =
1

π

∫ π

−π
g(x) cos(nx)dx =

2

π

∫ π

0
ex cos(nx) dx = 2

(−1)neπ − 1

1 + n2
.
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Applications définies sur un intervalle fermé et borné

Donc pour tout x ∈]0, π[, on a

ex =
eπ − 1

π
+

+∞∑
n=1

2
(−1)neπ − 1

1 + n2
cos(nx).
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Séries de Fourier et dérivation

Remarque. Il est utile de connâıtre la propriété suivante, conséquence
directe de la définition des an, bn et d’une intégration par parties :

Proposition

Si f est continue, L-périodique
(
avec toujours L = 2π

ω

)
et C 1 par

morceaux, alors pour n ∈ N⋆, on a :

an(f
′) = nω bn(f ), bn(f

′) = −nω an(f ).

Mathématiques 4 Séries de Fourier Printemps 2026 50 / 55



Relations de Bessel-Parseval

Théorème 1 (Bessel-Parseval)

Soit f : R → R une fonction T -périodique C 1 par morceaux, avec

T = 2π
ω > 0. Alors,

∑
n≥0

|cn|2,
∑
n≥1

(a2n + b2n) sont convergentes et on a

(Égalité de Parseval)

∑
n∈Z

|cn|2 =
a20
4

+
1

2

+∞∑
n=1

(a2n + b2n) =
1

T

∫ T

0
f (x)2 dx ,

où les an, bn sont les coefficients de la série de Fourier associée à f et les
cn sont les coefficients en écriture complexe.

Mathématiques 4 Séries de Fourier Printemps 2026 51 / 55



Relations de Bessel-Parseval

Remarque

Donc si f est 2π-périodique (et continue par morceaux ou plus
généralement Riemann intégrable), on a

∑
n∈Z

|cn|2 =
a20
4

+
1

2

+∞∑
n=1

(a2n + b2n) =
1

2π

∫ 2π

0
f (x)2 dx .

L’une des beautés de cette identité est qu’elle a lieu même si la série de
Fourier diverge ou a une somme différente de f en certains point !
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Relations de Bessel-Parseval

Exemple 1 (suite)

Reprenons la fonction f : R → R, périodique de période 2π, définie par

∀x ∈ [−π, π], f (x) =

{
1, si − α ≤ x ≤ α;
0, sinon.

où 0 < α < π. On a a0 =
2α

π
, an =

2 sin(nα)

πn
. En appliquant la formule

de Parseval, on obtient :

α2

π2
+

1

2

∑
n≥1

4 sin2(nα)

π2n2
=

1

2π

∫ π

−π
f 2(x)dx =

α

π
,

puis ∑
n≥1

sin2(nα)

n2
=

π2

2
(
α

π
− α2

π2
) =

απ − α2

2
.
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Relations de Bessel-Parseval

Exemple 2 (suite)

Reprenons la fonction f : R → R, 2π-périodique définie par

∀x ∈ [−π, π], f (x) = |x |.

On a a0 = π, an =

{
0, si n est pair;
−4
πn2

, si n est impair.
En appliquant l’égalité de Parseval, on a

π2

4
+

1

2

+∞∑
n=0

16

π2(2n + 1)4
=

1

2π

∫ π

−π
x2dx =

π2

3

et donc
+∞∑
n=0

1

(2n + 1)4
=

π4

96
.
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Merci de votre attention !
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