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Mathématiques 4

Printemps 2026
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0. Rappels séries numériques
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Pour les séries numériques, on regarde an pour n ≥ n0 et on regarde ce
que fait la somme Sn = a0 + · · ·+ an quand n → +∞. Exemples et
méthodes à bien connâıtre :

Série géométrique :
∑

an converge si et seulement si |a| < 1. En fait :

N∑
n=0

an =
1− aN+1

1− a
.

Série de Riemann :
∑

1/na converge si et seulement si a > 1.

Comparaison : si
∑

|un| converge et vn = O(un),
∑

vn converge
(absolument).

Les critères de d’Alembert et Cauchy.
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A partir de maintenant, on va introduire un paramètre supplémentaire x .
Mais pour comprendre ce qui se passe, il faut mâıtriser le contenu de Math
3 (qui est un cas particulier plus simple car rien ne dépend de x et qui est
en plus nécessaire pour presque toutes les notions de convergence !)
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Séries de fonctions
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De la même manière qu’on avait défini les séries numériques à partir des
suites numériques, on définit les séries de fonctions à partir des suites de
fonctions.

Soit (fn)n une suite de fonctions. Donc on s’intéresse à la somme

f0(x) + f1(x) + · · ·+ fn(x) + · · ·

Si x est fixé, la suite (fn(x))n est une suite numérique et donc on peut

étudier la série numérique
∑
n≥0

fn(x).
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Définition 1

Soit (fn) une suite de fonctions (réelle ou complexe). On appelle série de

fonctions de terme général fn et on note
∑

fn, la suite de fonctions (Sn)

définie par

Sn =
n∑

k=0

fk = f0 + f1 + · · ·+ fn, n ∈ N.

On appelle Sn la somme partielle d’ordre n de la série
∑

fn.

Remarque

On a
Sn(x) = f0(x) + · · ·+ fn(x).
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Convergence simple

Définition 2 (Convergence simple)

Soit (fn) une suite de fonctions définies sur D. On dit que la série
∑

fn
converge simplement sur D si la suite des sommes partielles (Sn) converge
simplement sur D.

D’une manière équivalente : la série
∑

fn converge simplement sur D si

pour tout x ∈ D, la série numérique
∑

fn(x) est convergente.

Notation. Si
∑

fn converge simplement sur D vers la fonction S , on note

+∞∑
n=0

fn(x) = S(x).
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Convergence simple

Exemple 1

Soit (fn)n la suite de fonctions

fn :

 D =]0,+∞[ → R

x 7→ fn(x) =
sin(nx)

3n
.

Étudions la convergence simple de la série
∑

fn. Fixons x ∈ R. On a∣∣∣∣sin(nx)3n

∣∣∣∣ ≤ | sin(nx)|
3n

≤ 1

3n
.

Comme la série numérique
∑ 1

3n est convergente (c’est une série

géométrique convergente), on déduit que la série numérique
∑ sin(nx)

3n est
absolument convergente.
Donc la série de fonctions

∑
fn converge simplement sur R.
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Convergence simple

Exemple 2 : séries géométriques

Soit
∑

fn la série de fonctions de terme général fn(z) = zn. La suite
(fn(z)) est une suite géométrique de raison z et on a

si z ̸= 1, Sn = 1 + z + z2 + · · ·+ zn =
1− zn+1

1− z
.

si z = 1, Sn = n + 1.

La série
∑

fn(z) converge si et seulement si 0 ≤ |z | < 1.

Donc la série
∑

fn converge simplement sur le disque {z ∈ C; |z | < 1}.
Dans ce cas, on peut calculer sa limite simple :

+∞∑
n=0

zn =
1

1− z
.
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Convergence uniforme

Définition 3 (Convergence uniforme)

Soit (fn) une suite de fonctions définies sur D. On dit que la série
∑

fn
converge uniformément sur D si la suite de fonctions (Sn) donnée par les
sommes partielles converge uniformément sur D.

Proposition 1

Toute série de fonctions qui converge uniformément sur D converge
simplement sur D.

Remarque

Pour montrer qu’il n’y a pas de convergence uniforme, il suffit d’exhiber
une suite (xn) d’éléments de D telle que fn(xn) ne tend pas vers 0.
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Convergence uniforme

Exemple 2 : séries géométriques

Reprenons
∑

fn la série de fonctions de terme général fn(z) = zn. Sur le
disque {z ∈ C; |z | < 1}, on a

Sn(z)− S(z) =
1− zn+1

1− z
− 1

1− z
=

−zn+1

1− z
,

et donc
∣∣Sn(z)− S(z)

∣∣ = |z |n+1

|1− z |

(
≤ |z |n+1

|1− |z ||

)
.

Comme lim
|z|→1
z ̸=1

|z |n+1

|1− z |
= +∞, la série

∑
fn(z) ne converge pas

uniformément sur le disque {z ∈ C; |z | < 1}.
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Convergence uniforme

Exemple 2 : séries géométriques

En revanche, elle converge uniformément sur tout disque de la forme
{z ∈ C; |z | ≤ r} où 0 ≤ r < 1. En effet,

∣∣Sn(z)− S(z)
∣∣ ≤ |z |n+1

|1− |z ||
≤ rn+1

|1− r |

et comme lim
n→+∞

rn+1

|1− r |
= 0, on déduit la convergence uniforme.
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Convergence uniforme et reste partiel

Définition 4

Soit
∑

fn une série de fonctions qui converge simplement vers S . On
appelle suite des restes partiels, la suite (Rn)n de fonctions définie par

Rn(x) = S(x)− Sn(x) =
+∞∑

k=n+1

fk(x).

Rn est appelé le reste d’ordre n.

Remarque

Remarquons que (Rn) est bien définie et que pour tout x ∈ D,

lim
n→+∞

Rn(x) = 0

et donc en particulier (Rn)n converge simplement vers la fonction nulle.
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Convergence uniforme et reste partiel

Proposition 2

Soit
∑

fn une série de fonctions qui converge simplement sur D. Alors elle
converge uniformément sur D si et seulement si la suite des restes partiels
(Rn) converge uniformément sur D vers la fonction nulle.
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Convergence uniforme et reste partiel

Le critère précédent est particulièrement utile lorsqu’on peut majorer le
reste d’ordre n. C’est le cas, par exemple, des séries alternées.

Exemple 3

Soit
∑

fn la série de terme général

fn :

 D =]0,+∞[ → R

x 7→ fn(x) =
(−1)n

x + n
.

Pour tout x ∈ R∗
+ fixé, la série numérique

∑
fn(x) de terme général

fn(x) =
(−1)n

x+n est une série alternée qui satisfait les conditions de la règle
des séries alternées : |fn(x)| est décroissante et limn→+∞ |fn(x)| = 0.
Donc la série

∑
fn converge simplement sur R∗

+.
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Convergence uniforme et reste partiel

Exemple 3

Comme
∑

fn(x) satisfait les conditions de la règle des séries alternées,

nous avons la majoration

|Rn(x)| ≤ |fn+1(x)| =
1

x + n + 1
≤ 1

n + 1

et donc

|Rn(x)− 0| ≤ 1

n + 1
.

On déduit la convergence uniforme de (Rn) vers 0.
Donc la série de fonctions

∑
fn converge uniformément sur R∗

+.
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Convergence normale

Soit f : D ⊆ K → K une application bornée. On note

∥f ∥ = sup
x∈D

|f (x)| < +∞

qu’on appelle la norme de la convergence uniforme de f .

Remarquons que si (fn) est une suite de fonctions bornées à partir d’un
certain rang, alors (fn) converge uniformément vers la fonction f si et
seulement si lim

n→+∞
∥fn − f ∥ = 0.

Mathématiques 4 Cours 3. Séries de fonctions Printemps 2026 17 / 36



Convergence normale

Définition 5

Soit
∑

fn une série de fonctions. On dit que
∑

fn converge normalement

sur D si la série numérique à termes positifs
∑

∥fn∥ est convergente.

Définition 6

Soit
∑

fn une série de fonctions. On dit que
∑

fn converge absolument

sur D si la série de fonctions
∑

|fn(x)| converge simplement pour tout

x ∈ D.
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Convergence normale

Remarques

Pour montrer qu’il y a convergence normale, on cherche à majorer
∥fn∥ par un réel un tel que

∑
un soit convergente.

Pour montrer qu’il n’y a pas convergence normale, on cherche à
minorer ∥fn∥ par un réel positif un tel que

∑
un soit divergente.
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Convergence normale

Exemple 1 (suite)

Reprenons (fn)n la suite de fonctions

fn :

 R → R

x 7→ fn(x) =
sin(nx)

3n
.

Pour tout x ∈ R, on a ∣∣∣∣sin(nx)3n

∣∣∣∣ ≤ | sin(nx)|
3n

≤ 1

3n

et donc

∥fn∥ ≤ 1

3n
.

Comme la série numérique
∑ 1

3n est convergente, on déduit que la série de

fonctions
∑ sin(nx)

3n est normalement convergente.
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Convergence normale

Soit
∑

fn la série de terme général

fn :

 D =]0,+∞[ → R

x 7→ fn(x) =
(−1)n

x + n
.

Pour tout n, ∥fn∥∞ = 1/n donc la série ne converge pas normalement.
En pratique c’est le seul cas que vous verrez avec convergence uniforme
mais pas de convergence normale.
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Liens entre les différentes formes de convergence des séries

Convergence normale ⇒ Convergence uniforme ⇒ Convergence simple

Faire la preuve est un bon exercice (il suffit de comprendre la définition et
l’inégalité triangulaire, il n’y a pas d’astuce !)
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Rappel
Le terme général d’une série numérique convergente tend vers 0. Si ce
terme général ne tend pas vers 0, on dit d’ailleurs que la série diverge
grossièrement.

On en déduit la proposition suivante :

Proposition 3

Soit
∑

fn une série de fonctions.

Si
∑

fn converge simplement, alors (fn) converge simplement vers la
fonction nulle.

Si
∑

fn converge uniformément, alors (fn) converge uniformément
vers la fonction nulle.

Si
∑

fn converge normalement, alors la suite numérique (∥fn∥)
converge vers 0.

Attention

Les réciproques dans la proposition précédente sont toutes fausses en
général... !
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Convergence et continuité

Comme les sommes partielles des séries de fonctions présentent des
propriétés analogues à celles des suites de fonction, on a aussi :

Théorème 1

Si une séries de fonctions
∑

fn converge uniformément sur D vers une
fonction S et si chaque fn est continue sur D, alors S est continue sur D.

Plus précisément, si
∑

fn converge uniformément sur D vers S et si
chaque fn est continue en x0 ∈ D, alors S est continue en x0.
On a en particulier

lim
x→x0

( +∞∑
n=0

fn(x)
)
=

+∞∑
n=0

( lim
x→x0

fn(x)).
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Convergence et intégrales

Théorème 2

Soient a, b ∈ R, a < b. Soit (fn) une suite de fonctions
Riemann-intégrables sur [a, b]. Supposons que

∑
fn converge

uniformément sur [a, b] vers une fonction S . Alors

S est Riemann-intégrable sur [a, b],

en posant, pour tout x ∈ [a, b] et tout n ∈ N,

Fn(x) =

∫ x

a
fn(t) dt, F (x) =

∫ x

a
S(t) dt,

la série
∑

Fn converge uniformément vers F sur [a, b].

On a en particulier∫ b

a

( +∞∑
n=0

fn(t)
)
dt =

+∞∑
n=0

(∫ b

a
fn(t) dt

)
.
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Convergence et dérivées

Théorème 3

Soient a, b ∈ R, a < b. Soit (fn) une suite de fonctions dérivables de [a, b]
dans R. On suppose :

que la série des dérivées
∑

f ′n converge uniformément sur [a, b] vers
une fonction g ,

qu’il existe x0 ∈ [a, b] tel que la série
∑

fn(x0) converge.

Alors la suite
∑

fn converge uniformément sur [a, b] vers une fonction f
dérivable telle que f ′ = g ; on peut en particulier dériver terme à terme au
sens où ( +∞∑

n=0

fn(t)
)′

=
+∞∑
n=0

f ′n(t).

Enfin, si chaque fn est de classe C 1, il en est de même de f .
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Les objets étudiés

1 Ne pas confondre les suites et les séries !

2 Les suites et les séries NUMERIQUES sont des cas particuliers de
séries et suites de fonctions.

3 Pour les suites DE FONCTIONS, seulement 2 types de convergence.

4 Pour les séries DE FONCTIONS, il y en a 3 !
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Les objets étudiés

1 un → 0 n’implique pas que
∑

un converge ! Ni pour les séries
numériques, ni pour les séries de fonctions.

2 Pour les séries de fonctions, la convergence uniforme est (presque)
toujours une conséquence de la convergence normale.

3 Pour les suites et surtout pour les séries, la non-convergence uniforme
est souvent prouvée avec ”la méthode de la suite”. Exemples :∑

fn(x), fn(x) = sin(nx), x ∈ [0, 1].∑
fn(x), fn(x) = 1/nx3, x ∈ [0, 1].
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Exercice récapitulatif

Soit
∑

fn la série de fonctions de terme général

fn :

{
R → R
x 7→ fn(x) =

nx

1 + n3x2
.

(1) Soit a > 0. Montrer que
∑

fn converge normalement sur
Da =]−∞,−a] ∪ [a,+∞[. Y a-t-il convergence normale sur R ?
(2) Soit S la limite de la série. Montrer que S est continue sur ]0,+∞[.
(3) Montrer que S est dérivable sur R∗ et écrire S ′ comme la somme
d’une série. Indication : considérer ]0,+∞[= ∪k≥1[1/k,+∞[.

(4) Montrer que S est Riemann-intégrable sur [1, 2] et écrire

∫ 2

1
S(x) dx

comme la somme d’une série.
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Corrigé

(1) On a

f ′n(x) =
n(1 + n3x2)− nx × (2xn3)

(1 + n3x2)2
=

n(1− n3x2)

(1 + n3x2)2
,

f ′n(x) = 0 ssi x = ± 1√
n3

,

f ′n(x) ≤ 0 ssi |x | ≥ 1√
n3

ssi x ∈]−∞,− 1√
n3

] ∪ [
1√
n3

,+∞[ .

Donc

fn est décroissante sur ]−∞,− 1√
n3

] ∪ [
1√
n3

,+∞[,

et croissante sur [− 1√
n3

,
1√
n3

].
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Pour n assez grand,

[− 1√
n3

,
1√
n3

] ⊆ [−a, a], ∥fn∥D = sup
Da

|fn(x)| = fn(a) =
na

1 + n3a2
∼ 1

an2
.

Donc la série converge normalement sur Da.
Sur R, on a

∥fn∥R = sup
x∈R

|fn(x)| = fn

(
1√
n3

)
=

1

2
√
n
.

La série
∑ 1√

n
est une série de Riemann divergente. On déduit que la

série
∑

fn n’est pas normalement convergente sur R.
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(2) Soit x0 ∈]0,+∞[. On peut alors choisir a ∈]0, x0[. Pour tout n ∈ N, la
fonction fn est continue en x0. La série

∑
fn est normalement convergente

et donc uniformément convergente sur [a,+∞[. On conclut que sa limite
S est continue en x0.
(3) Pour pouvoir appliquer le théorème de dérivation des séries, on étudie
la convergence uniforme de la série

∑
f ′n. On a

f ′n(x) =
n(1− n3x2)

(1 + n3x2)2
.

Soient a, b ∈ R tels que a < b < 0 ou 0 < a < b. On a, pour tout
x ∈ [a, b], |(1− n3x2)| ≤ |1|+ | − n3x2| = 1 + n3x2 et donc

∥f ′n(x)∥ ≤ n(1 + n3b2)

(1 + n3a2)2
, si 0 < a < b,

∥f ′n(x)∥ ≤ n(1 + n3a2)

(1 + n3b2)2
, si a < b < 0.
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Or
n(1 + n3α2)

(1 + n3β2)2
∼

n→+∞

α2

β4n2
(α, β > 0 fixés)

et donc la série
∑

f ′n est normalement, puis uniformément convergente
sur [a, b].
Comme

∑
fn est normalement convergente, elle est simplement

convergente et donc il existe bien x0 ∈ [a, b] tel que la série
∑

fn(x0) est
convergente.
Par conséquent, S est dérivable sur [a, b] et pour tout x ∈ [a, b], on a

S ′(x) =
+∞∑
n=0

n(1− n3x2)

(1 + n3x2)2
.
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(4) La série
∑

fn est uniformément convergente sur [1, 2] et les fn sont
continues donc Riemann-intégrables, d’où S est Riemann-intégrable sur
[1, 2]. On a ainsi ∫ 2

1
fn(x) dx =

1

2n2
ln

(
1 + 4n3

1 + n3

)
,

et donc ∫ 2

1
S(x) =

+∞∑
n=0

1

2n2
ln

(
1 + 4n3

1 + n3

)
.
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Merci de votre attention !
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