
Organisation de L'UE Mathématiques 4 (MAT2013L)

Vous avez reçu par mail un lien vers la page du cours. Vous trouverez
notamment sur cette page :

des informations sur le Cours Magistral CM (références, avancement,
transparents du cours).

des informations sur les Travaux Dirigés TD (feuilles de TD,
programme des séances).

des annales des années précédentes pour vous entrainer mais le

programme et les exigences changent !

des informations sur votre évaluation (date et programme du
contrôle partiel, coe�cients).
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Organisation de L'UE Mathématiques 4 (MAT2013L) : TD

Venez en CM et en TD et respectez vos groupes ! Sinon vous

ratez plein d'informations notamment sur l'organisation !.

Contactez-moi si problème pédagogique avec un chargé de TD (pas
de rappels de cours, soucis de rythme...) Avant tout, on discute : le
changement de groupe n'est pas une option !

Les demandes pour passer avec un chargé de TD spéci�ques ne sont
pas considérées.

Si problème grave avec chargé de TD (paroles déplacées...) il faut
contacter la mission appropriée (me demander si nécessaire) et les
mesures seront prises.
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Contact

Je ne réponds pas systématiquement à certains mails (demandes
individuelles non justi�ées, plaintes non constructives, demandes sur
le sujet d'un contrôle qui arrive...)

Pour certains mails (demande précision programme, calcul note �nale
pas compris, soucis page web) je mettrai à jour la page web plutôt
que de répondre individuellement.

Par contre si question cours, souci long avec page web ou situation
particulière (souci médical ou administratif...) je réponds plutôt vite
et n'hésitez pas à me relancer.

Respectez la forme des mails (politesse minimale) avec moi et avec
les chargés de TD.

Logiquement, pour l'organisation du cours, le programme du

devoir...il faut écrire à moi. Pour la solution d'un exercice, il faut
écrire plutôt aux chargés de TD. Pour les notions du cours, vous
faites ce que vous voulez !
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Evaluation

Le but n'est pas de comprendre en profondeur tous les objets.
On n'a pas le temps, ce n'est pas le but principal de votre

formation et certains objets sont très di�ciles.

Par contre c'est indispensable de ne pas faire des choses de manière
machinale. Par exemple, une suite n'est pas une série, la variable x et
la variable t ne jouent pas le même rôle dans

∫ x
0
t dt...

En gros : il faut d'abord comprendre avec quoi vous travaillez,
ensuite apprendre les théorèmes et faire les calculs correctement.

Exercices où vous ne comprenez pas les objets=perte de

temps pour vous, déprimant pour nous.

Si vous vous rendez compte que vous ne connaissez pas la dé�nition,
ce n'est pas "stratégique" de faire l'exo !
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Evaluation

Il faut évidemment connaître les objets vus avant. Par exemple, c'est
indispensable de connaître les séries numériques avant les séries de
fonctions et on peut bien sûr mettre une partie du contrôle sur ça !

Apprenez les dé�nitions : il y aura des questions de cours !

Ne stressez pas trop sur des exercices complexes sur les EDP en TD :
ce ne sera pas le coeur de votre évaluation !
Pareil pour les preuves des résultats à connaître : si vous connaissez
les théorèmes c'est déjà très bien !

On donnera des indications sur le programme sur la page web du
cours. Si quelque chose n'est pas clair, écrivez-moi et je mettrai à
jour la page.
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Plan général du cours sur le semestre (24h) :

Partie 1 (Suites/séries)

Révisions : développements limités, équivalents,
développements asymptotiques.

Suites et séries de fonctions.

Séries de Fourier. Applications aux ÉDP.

Partie 2 (Intégrales)

Intégrales impropres. Intégrales à paramètre.

Transformée de Laplace et décomposition en éléments simples.

Produit de convolution et régularisation.

Transformée de Fourier. Application à l'étude d'ÉDP linéaires.
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Cours 1. Relations de comparaison : développements
limités, équivalents, développements asymptotiques.

Mathématiques 4, printemps 2026

4 février 2026
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Idée générale

Une notion importante est celle de vitesse de convergence en a.
Il faut savoir comparer une fonction "compliquée" à une autre fonction
plus simple servant de référence, au voisinage de ce a.
C'est le but des relations de comparaisons dont une forme particulièrement
utile est appelée développement limité (développement de Taylor).

Pour cela, on introduit le grand O. Il est très utile pour comparer en plus
des o et ∼ que vous connaissez déjà !
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Comparaison en +∞

Dans cette partie, on suppose connue la notion de limite (�nie ou
±∞) quand x → +∞ (si besoin, revoir cours terminale ou TMB).

Dé�nition 1

Soit b : R → R une fonction. On dit que b est une fonction bornée en
+∞ s'il existe des réels positifs M,C tels que pour tout x ≥ M, on ait

|b(x)| ≤ C .

NB : on dit parfois bornée au voisinage de +∞ au lieu de bornée en +∞.

Exemple 1

Soit g : R → R une fonction tendant vers une limite �nie ℓ ∈ R : si
limx→+∞ g(x) = ℓ, alors g est bornée en +∞.
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Dé�nition 2

Soient f et g deux fonctions de R dans R.
1 Négligeabilité. La fonction f est dite négligeable en +∞ devant la

fonction g et on note f (x) =x→+∞ o(g(x)) ou simplement

f = o+∞(g) s'il existe une fonction ε : R → R et un réel M > 0 tels

que, pour tout x ≥ M, on ait

f (x) = ε(x)g(x) et lim
x→+∞

ε(x) = 0.

2 Équivalence. La fonction f est dite équivalente en +∞ à la

fonction g et on note f (x) ∼x→+∞ g(x) ou simplement f ∼+∞ g
s'il existe une fonction e : R → R et un réel M > 0 tels que, pour

tout x ≥ M, on ait

f (x) = e(x)g(x) et limx→+∞ e(x) = 1.

3 Domination. La fonction f est dite dominée en +∞ par la

fonction g et on note alors f (x) =x→+∞ O(g(x)) ou simplement

f = O+∞(g), s'il existe une fonction b : R → R et un réel M > 0
tels que, pour tout x ≥ M, on ait

f (x) = b(x)g(x) et b est une fonction bornée en +∞.
Mathématiques 4, printemps 2026 Relations de comparaison



A quoi sert la nouvelle notation grand O ?

Le terme de domination est trompeur : par exemple x domine 2x à l'in�ni.
L'intérêt est que les théorèmes de comparaison pour la convergence de
séries se réecrivent plus facilement. Plus concrètement, si vn ≥ 0 ∀n et si
un = O(vn) : ∑

vn converge ⇒
∑

un converge.

et réciproquement : ∑
un diverge ⇒

∑
vn diverge.

Ces résultats sont très utiles et généralisent ceux vus précédemment.
On peut procéder de même pour réecrire les résultats de comparaison vus
pour les intégrales.
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Comparaison en +∞ (suite)

Remarque 1

Si λ ̸= 0 est une constante alors f (x) ∼x→∞ λ veux simplement dire
qu'on a la limite f (x) → λ quand x → +∞, mais...

Attention !

Aucune fonction usuelle n'est équivalente à 0 !

En e�et, f (x) ∼x→+∞ 0 veut dire f (x) = e(x)× 0 pour x assez grand ,
donc f (x) est identiquement nulle (= 0) pour tout x assez grand. Si vous
trouvez cette réponse en exercice, votre réponse est presque sûrement
fausse !
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Comparaison en +∞ (suite)

Une conséquence importante de la dé�nition précédente est la suivante :

Proposition 1

On a : f (x) ∼x→+∞ g(x) si et seulement si f (x)− g(x) =x→+∞ o(g(x)).

Les notions ci-dessus sont particulièrement utilisées lorsque la fonction
"de référence" g ne s'annule pas pour tout x assez grand, c'est à dire, en
reprenant les notations de la précédente dé�nition, lorsqu'on a :

∃M > 0 , ∀x ≥ M , g(x) ̸= 0 .
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Comparaison en +∞ (suite)

Proposition 2

On suppose que ∃M < +∞, ∀x ≥ M, g(x) ̸= 0.
1 f (x) =x→+∞ O(g(x)) ⇐⇒ f /g est bornée sur [N,+∞[ pour un

certain N ≥ M.

2 f (x) =x→+∞ o(g(x)) ⇐⇒ limx→+∞ f (x)/g(x) = 0.
3 f (x) ∼x→+∞ g(x) ⇐⇒ limx→+∞ f (x)/g(x) = 1

Exemple 2 (révision de terminale/TMB sur les limites)

1 xα =x→+∞ o(xβ) si et seulement si α < β. En e�et
xα/xβ = 1/xβ−α qui tend vers 0 quand x → +∞ si et seulement si
β − α > 0.

2 xα =x→+∞ o(eβx) pour α ∈ R, β > 0 �xés.
En e�et xα/eβx = xαe−βx qui tend alors toujours vers 0 quand
x → +∞ pour β > 0.
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Comparaison en +∞ (suite)

Exemple 2 (suite)

3 e−βx =x→+∞ o(xα) pour tout α ∈ R, β > 0 �xés.
En e�et e−βx/xα = x−αe−βx qui tend vers 0 quand x → +∞ pour
β > 0.

4 si P(x) =
∑n

k=0 akx
k polynôme avec an di�érent de 0 alors

P(x) ∼x→+∞ anx
n car P(x)/xn =

∑n
k=0 akx

k−n =x→+∞ an + o(1).

Un polynôme est équivalent en +∞ à son monôme de plus haut

degré !

Exemple 2 (suite)

5 ln x =x→+∞ o(xβ) pour β > 0.
En e�et, par croissance comparée, on a alors limx→+∞

ln x
xβ

= 0.
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Comparaison en +∞ (suite)

Les relations de base suivantes peuvent être utilisées librement. Elles
doivent aussi pouvoir être retrouvées rapidement directement à partir de
la dé�nition 2.

Proposition 3

Soient f , g , h, k des fonctions.

1 f (x) =x→+∞ o(g(x)) ⇒ f (x) =x→+∞ O(g(x)).

2 f (x) ∼x→+∞ g(x) ⇒ f (x) =x→+∞ O(g(x)).

3 f (x) =x→+∞ O(h(x)) et g(x) =x→+∞ O(h(x)) ⇒
f (x) + g(x) =x→+∞ O(h(x)).

4 f (x) =x→+∞ O(h(x)) et g(x) =x→+∞ O(k(x)) ⇒
f (x)g(x) =x→+∞ O(h(x)k(x)).

5 f (x) =x→+∞ o(h(x)) et g(x) =x→+∞ o(h(x)) ⇒
f (x) + g(x) =x→+∞ o(h(x)).
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Comparaison en +∞ (suite)

Proposition 3 (suite)

6 f (x) =x→+∞ o(h(x)) et g(x) =x→+∞ O(k(x)) ⇒
f (x)g(x) =x→+∞ o(h(x)k(x)).

7 f (x) ∼x→+∞ h(x) et g(x) ∼x→+∞ k(x) ⇒ f (x)g(x) ∼x→+∞
h(x)k(x).

8 f (x) =x→+∞ O(g(x)) et g(x) =x→+∞ O(h(x)) ⇒ f (x) =x→+∞
O(h(x)).

9 f (x) =x→+∞ o(g(x)) et g(x) =x→+∞ O(h(x)) ⇒ f (x) =x→+∞
o(h(x)).

10 f (x) =x→+∞ O(g(x)) et g(x) =x→+∞ o(h(x)) ⇒ f (x) =x→+∞
o(h(x)).

Attention

Pas de sommes d'équivalents !
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Comparaison en +∞ (suite)

Illustration des deux avertissements précédents (en rouge)

Si f (x) = x + x3, g(x) = x − x3, alors f (x) ∼x→+∞ x3,
g(x) ∼x→+∞ −x3 mais f (x) + g(x) = 2x ̸∼x→+∞ 0. Ce type
d'annulation est la source principale d'erreur donnant des équivalents à 0.
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Preuve de la proposition 3

Dans cette preuve de la proposition 3, tout se passe quand x → +∞,
même si on ne le précise (du coup) pas à chaque fois.

1 Si f (x) =x→+∞ o(g(x)) alors f (x) = ε(x)g(x) et ε(x) →x→+∞ 0,
donc ε(x) est bornée en +∞ (voir exemple 1), ce qui donne bien
f (x) =x→+∞ O(g(x)).

2 Si f (x) ∼x→+∞ g(x) alors f (x) = e(x)g(x) et e(x) →x→+∞ 1 ,
donc e(x) est bornée en +∞, ce qui donne bien
f (x) =x→+∞ O(g(x)) (voir exemple 1).

3 Si f (x) =x→+∞ O(h(x)) et g(x) =x→+∞ O(h(x)), on a pour x
assez grand f (x) = b(x)h(x) et g(x) = b̃(x)h(x) avec b, b̃ bornées
en +∞ : on peut donc �xer M,C > 0 telles que pour tout x ≥ M ,
on ait |b(x)| ≤ C et |b̃(x)| ≤ C . D'où
f (x) + g(x) = (b(x) + b̃(x))h(x) avec b + b̃ bornée en +∞. On
véri�e en e�et que

∀x ≥ M , |b(x) + b̃(x)| ≤ |b(x)|+ |b̃(x)| ≤ 2C ,
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Preuve de la proposition 3 (suite)

ce qui donne bien f (x) + g(x) =x→+∞ O(h(x)).
4 Si f (x) =x→+∞ O(h(x)) et g(x) =x→+∞ O(k(x)) , on peut trouver

M,C1,C2 > 0 tels que pour tout x ≥ M assez grand
|f (x)| ≤ C1|h(x)| et |g(x)| ≤ C2|k(x)| , donc
|f (x)g(x)| = |f (x)||g(x)| ≤ C1C2|h(x)||k(x)| donc
f (x)g(x) = O(h(x)k(x)).
→"donc" : véri�er que la fonction b donnée par
b(x) = f (x)g(x)/(h(x)k(x)) si h(x)k(x) ̸= 0 et par b(x) = 0 sinon
satisfait fg = bhk et |b(x)| ≤ C1C2 pour tout x ≥ M.

5 Si f (x) =x→+∞ o(h(x)) et g(x) =x→+∞ o(h(x)) alors pour x
grand, f (x) = ε(x)h(x) et g(x) = η(x)h(x) avec
lim ε(x) = lim η(x) = 0, donc f (x) + g(x) = (ε(x) + η(x))h(x) et
comme lim(ε(x) + η(x)) = 0, f (x) + g(x) = o(h(x)).

6 Si f (x) =x→+∞ o(h(x)) et g(x) =x→+∞ O(k(x)), on a
f (x) = ε(x)h(x) et g(x) = b(x)k(x) avec lim ε(x) = 0 et b bornée
en +∞ : ∃M,C > 0,∀x ≥ M, |b(x)| ≤ C .
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Comparaison en +∞ (suite)
Preuve de la proposition 3 (suite)

D'où pour x ≥ M, on a f (x)g(x) = ε(x)b(x)h(x)k(x) et
0 ≤ |ε(x)b(x)| ≤ |ε(x)|C → 0 donc εb → 0 par théorème
d'encadrement (ou des "gendarmes"), et on conclut bien que
f (x)g(x) = o(h(x)k(x)).

7 Si f (x) ∼x→+∞ h(x) et g(x) ∼x→+∞ k(x), on a f (x) = e1(x)h(x)
et g(x) = e2(x)k(x) avec e1(x) → 1 et e2(x) → 1 donc
f (x)g(x) = e1(x)e2(x)h(x)k(x) et e1(x)e2(x) → 1, donc
f (x)g(x) ∼x→+∞ h(x)k(x).

8 Si f (x) =x→+∞ O(g(x)) et g(x) =x→+∞ O(h(x)), on a donc pour
x grand |f (x)| ≤ C1|g(x)| et |g(x)| ≤ C2|h(x)|, donc
|f (x)| ≤ C1C2|h(x)| et donc f (x) = O(h(x)).

9 Si f (x) =x→+∞ o(g(x)) et g(x) =x→+∞ O(h(x)), on a
f (x) = ε(x)g(x) et g(x) = b(x)h(x) avec lim ε(x) = 0 et
|b(x)| ≤ C pour x ≥ M, d'où f (x) = ε(x)b(x)h(x) et
0 ≤ |ε(x)b(x)| ≤ |ε(x)|C → 0 donc f (x) = o(h(x)). Le dernier cas
est similaire.
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Comparaison en tout a dans R ∪ {±∞} : cas général

Nous rappelons maintenant les comparaisons de fonctions en a ∈ R pour
déduire des développements de Taylor usuels (cf TMB) les équivalents
usuels. Dans les dé�nitions suivantes, on se donne le lieu de comparaison
a dans R ∪ {±∞} et l'ensemble de dé�nition D ⊂ R un sous intervalle de
R satisfaisant soit D =]A,B[, A < a < B , soit D =]a,A[, soit D =]A, a[,
soit D =]A,+∞[ et alors a = +∞, soit D =]−∞,A[ et alors a = −∞.

On dit aussi que V ⊂ D est un voisinage de a s'il existe M ∈ R tel que
V =]a,M[ si D =]a,A[, tel que V =]M, a[ si D =]A, a[ ou
tel que V =]C ,C ′[⊃ a si D =]A,B[

On suppose dans cette partie que D, a est dans l'un des cas ci-dessus.

Dé�nition 3

Soit b : D → R une fonction. On dit que b est une fonction bornée au
voisinage de a s'il existe un voisinage V de a et un réel positif C tels

que pour tout x ∈ V , on ait |b(x)| ≤ C .
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Comparaison en tout a dans R∪ {±∞} : cas général (suite)

Dé�nition 4

Soient f et g , deux fonctions de D dans R.

1 Domination. La fonction f est dite dominée par la fonction g au

voisinage de a et on note f (x) =x→a O(g) s'il existe une fonction

b : D → R bornée au voisinage de a telle que f = bg .

2 Négligeabilité. La fonction f est dite négligeable devant la fonction

g au voisinage de a et on note f (x) =x→a o(g(x)) s'il existe une

fonction ε : D → R telle que limx→a ε(x) = 0 et telle que f = εg .

3 Équivalence. La fonction f est dite équivalente à la fonction g en

a et on note f (x) ∼x→a g(x) s'il existe une fonction e : D → R telle

que limx→a e(x) = 1 et telle que f = eg .
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Comparaison en tout a dans R∪ {±∞} : cas général (suite)

Exemple 3 (révision de terminale/TMB sur les limites, à comparer à 2)

1 Même si écrire f (x) →x→a 0 ou f (x) =x→a o(1) est
fondamentalement la même chose, on verra en TD que la notation
"o" est en pratique plus facile à manipuler.

2 xα =x→0 o(x
β) si et seulement si α > β.

En e�et xα/xβ = xα−β qui tend vers 0 en 0 si et seulement si
α− β > 0.

3 si P(x) =
∑n

k=l akx
k polynôme avec al di�érent de 0 alors

P(x) ∼x→0 alx
l car P(x)/x l =

∑n
k=l akx

k−l =x→0 al + o(1).

Un polynôme est équivalent en 0 à son monôme de plus petit

degré !

Mathématiques 4, printemps 2026 Relations de comparaison



Comparaison en tout a dans R∪ {±∞} : cas général (suite)

On a les mêmes propriétés que pour les relations de comparaison en +∞,
en remplaçant +∞ par a. On obtient des équivalents en utilisant les
développements limités vus en TMB 1.

Proposition 4 (Équivalents usuels quand x → 0)

On a :
ex − 1 ∼x→0 x , ln(1+ x) ∼x→0 x ,

sin(x) ∼x→0 x , tan(x) ∼x→0 x ,

cos(x)− 1 ∼x→0 −
x2

2
,

1
1− x

− 1 ∼x→0 x ,

(1+ x)α − 1 ∼x→0 αx , (α ∈ R indépendant de x) ,

f dérivable en a avec f ′(a) ̸= 0 : f (x)− f (a) ∼x→a f
′(a)(x − a).

1. http://math.univ-lyon1.fr/~frabetti/TMB/TMB-livret-2018.pdf p 38
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Exemple 4 (Développements limités)

Une relation f (x) =x→a P(x − a) + o((x − a)n)) où P est un polynôme
de degré ≤ n s'appelle un Développement Limité (DL) d'ordre n en
a ∈ R. Vous avez vu en TMB (même référence que ci-dessus, p.39)
qu'une fonction f n-fois dérivable sur un petit intervalle ouvert contenant
un point a ∈ R admet un développement limité d'ordre n en a et on a
même alors plus précisément quand x → a (formule de Taylor-Young) :

f (x) = f (a)︸︷︷︸
=f (a)×(x−a)0

+ f ′(a)(x − a) +
f ′′(a)

2!
(x − a)2 +

f (3)(a)

3!
(x − a)3

+...+
f (n)(a)

n!
(x − a)n + o((x − a)n) .

Il est très important de garder cette relation ordonnée et de ne pas

développer les (x − a)k pour qu'elle reste signi�cative.
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Exemple 5

En particulier, toujours quand x → a, rechercher un développement limité
à l'ordre 0 n'est rien d'autre qu'étudier la limite ou la continuité de la
fonction f en a :

f admet un DL d'ordre 0 ⇐⇒ lim
x→a

f (x) existe (et vaut alors f (a))

⇐⇒ f est continue en a ⇐⇒ f (x) = f (a) + o(1) .
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Comparaison en tout a dans R∪ {±∞} : cas général (suite)

De même à l'ordre 1, toujours quand x → a, écrire un développement
limité à l'ordre 1 n'est rien d'autre qu'étudier la dérivabilité d'une fonction
f continue en a :

f admet un DL d'ordre 1 ⇐⇒ lim
x→a,x ̸=a

f (x)− f (a)

x − a
existe (=f'(a))

⇐⇒ f dérivable en a ⇐⇒ ∃ℓ ∈ R , f (x) = f (a)+ ℓ× (x −a)+o(x −a)

(et alors ℓ = f ′(a)) .
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Comparaison en tout a dans R∪ {±∞} : cas général (suite)

Plus généralement, une conséquence directe des formules de Taylor est la
proposition suivante (à très bien connaître sauf la dernière et à savoir
retrouver ou compléter) :

Proposition 5 (Développements limités usuels quand x → 0)

1
1− x

=x→0 1+x+x2+x3+o(x3),
1

1+ x
=x→0 1−x+x2−x3+o(x3) ,

ex =x→0 1+x+
x2

2!
+
x3

3!
+o(x3), ln(1+x) =x→0 x−

x2

2
+
x3

3
+o(x3),

sin(x) =x→0 x −
x3

3!
+ o(x4), cos(x) =x→0 1−

x2

2!
+

x4

4!
+ o(x4),

(1+ x)α =x→0 1+ αx +
α(α− 1)

2
x2 +

α(α− 1)(α− 2)
3!

x3 + o(x3)

(α ∈ R indépendant de x).
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Exercices d'application
Les sommes et compositions de DL (permises par les résultats sur les o)
sont un substitut avantageux aux sommes d'équivalents. Nous allons voir
aussi (et en TD) comment ce point de vue permet de calculer assez
facilement certaines limites délicates, en levant les formes indéterminées.

Exercice 1

Étudier limx→0,x ̸=0
sin x
x et en déduire qu'on peut prolonger la fonction

f : R⋆ → R donnée par f (x) = sin x
x en une fonction continue sur R. On

appellera dorénavant sinus cardinal, notée sinc, cette fonction prolongée.

Solution de l'exercice 1 :

par la proposition 5, on a quand x → 0 que
sin x = x + o(x) = x(1+ o(1)), et si de plus x ̸= 0, on obtient
sin x
x = �x(1+o(1))

�x
= 1+ o(1) → 1, par dé�nition de o(1). On en déduit

donc que limx→0,x ̸=0
sin x
x existe et vaut 1 , puis que la fonction sinc

donnée par sinc(x) = sin x
x si x ̸= 0 et sinc(0) = 1 est continue sur tout R

(en particulier en 0).
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Exercice 2

Étudier limx→0,x ̸=0
ex−1
x .

Solution de l'exercice 2 :

par la proposition 5, on a quand x → 0

ex = 1+ x + o(x) ⇐⇒ ex − 1 = x + o(x) = x (1+ o(1)) ,

et, pour x ̸= 0, on peut conclure de façon analogue à l'exercice 1 que
ex−1
x = �x(1+o(1))

�x
= 1+ o(1) → 1. La limite demandée existe donc bien et

vaut 1.

Remarque 2

Les exercices 1 et 2 vous rappellent peut-être des souvenirs, même de
terminale. Si oui, il est probable que vous ayez alors utilisé
sin′(0) = 1 = exp′(0) en faisant apparaître le taux d'accroissement

associé à la dérivée en 0. La résolution courte et systématique des
exercices précédents devraient commencer à vous convaincre de l'intérêt
des développements limités.
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Exercices d'application (suite)
Pour éviter toute erreur liée aux avertissements précédents sur les
équivalents, une méthode sûre est de toujours calculer avec des
développements limités, et, si besoin, de revenir seulement à la �n à la
formulation avec les équivalents.

Exercice 3

Trouver un équivalent quand x → 0 de

f (x) =
1

1− x
− 1

1− x2
− sin(x) .

En déduire la limite limx→0,x ̸=0
f (x)
x2

.

Solution de l'exercice 3 :

par la proposition 5, on a quand x → 0 :

1
1− x

= 1+ x + x2 + x3 + o(x3).
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Solution de l'exercice 3 (suite)

De même, on a quand u → 0 que 1/(1− u) = 1+ u + u2 + o(u2) ;
posant u = x2 qui tend bien vers 0 quand x → 0, on en déduit en
remplaçant u par sa valeur x2

1
1− x2

= 1+x2+x4+o(x4) = 1+x2+x3 (x + o(x))︸ ︷︷ ︸
→0 ⇐⇒ =o(1)

= 1+x2+o(x3) .

Toujours par la proposition 5, on a en�n sin x = x − x3

6
+ o(x3). Au bilan,

on peut écrire (toujours quand x → 0)
1

1− x
− 1

1− x2
− sin x

=
(
1+ x + x2 + x3 + o(x3)

)
−
(
1+ x2 + o(x3)

)
−
(
x − x3

6
+ o(x3)

)
=

7
6
x3 + o(x3) =

7
6
x3 (1+ o(1)) ∼ 7

6
x3 ,

revenant simplement à la dé�nition d'un équivalent à la toute �n. Du
coup, on a bien f (x)/x2 = 7

6
x × (1+ o(1)) → 0, quand x → 0, x ̸= 0.
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L'une des di�cultés lors de ces calculs est que la proposition 5 ne
considère que des développements en 0. En fait, même si x tend vers une
valeur �nie autre que 0 ou même vers ±∞, on peut très souvent d'y
ramener, comme on l'illustre dans les exercices suivants.

Exercice 4

Calculer la limite limx→+∞(1+ 1
x )

x .

Solution de l'exercice 4 :

on constate déjà qu'il s'agit bien d'une forme indéterminée (sinon, on n'a
pas besoin d'aller chercher les développements limités et on peut se
contenter d'utiliser les propriétés usuelles des limites). On procède ensuite
par "étages". Quand x → +∞ comme ici, 1

x → 0 et il est donc opportun
pour se ramener à la proposition 5 de poser u = 1

x → 0.
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Exercices d'application (suite)

Solution de l'exercice 4 (suite)

On a x = 1/u d'où on a quand x → +∞(
1+

1
x

)x

= (1+ u)
1
u = exp

(
1
u
ln (1+ u)

)
avec u → 0+. Grâce à cette dernière propriété cruciale u → 0+, on peut à
nouveau appliquer la proposition 5 et écrire successivement :

ln(1+ u) = u + o(u) ,

1
u
ln(1+ u) =

�u(1+ o(1))

�u
= 1+ o(1) ,

exp

(
1
u
ln(1+ u)

)
= exp(1+ o(1)) → e1 = e .

D'où, la limite limx→+∞(1+ 1
x )

x existe et vaut e.
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Exercice 5

Étudier la limite limx→1+
1

(x−1)2

(
1

1+x − 1
2
+ sin(x−1)

4

)
.

Solution de l'exercice 5 :

comme dans l'exercice précédent, on veut se ramener à une quantité qui
tend vers 0 pour pouvoir appliquer la proposition 5, même si x ne tend
pas lui-même vers 0. On pose alors x = 1+ u ⇐⇒ u = x − 1 et on a
bien que u → 0+ quand x → 1+ (NB : ce dernier est imposé par
l'énoncé). On réécrit donc

1
1+ x

− 1
2
+

sin(x − 1)
4

=
1

2+ u
− 1

2
+

sin u

4
,

puis on écrit grâce à la proposition 5, maintenant légitime car u → 0 :

1
2+ u

=
1
2
× 1

1+ u
2

=
1
2

(
1− u

2
+

u2

4
+ o(u2)

)
=

1
2
− u

4
+

u2

8
+ o(u2) ,
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Exercices d'application (suite)

Solution de l'exercice 5 (suite) :

en utilisant la formule pour 1
1+v avec v = u

2
→ 0. On a aussi

sin u = u + o(u2). On a donc

1
2+ u

− 1
2
+

sin u

4
=

1
2
− u

4
+

u2

8
+ o(u2)− 1

2
+

u

4
+ o(u2)

=
u2

8
(1+ o(1))

(
∼ u2

8

)
,

et en�n

1
(x − 1)2

(
1

1+ x
− 1

2
+

sin(x − 1)
4

)
=

1
u2

(
1

2+ u
− 1

2
+

sin u

4

)
=

1+ o(1)
8

→ 1
8
.

D'où la limite considérée existe bien et vaut 1
8
.
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Exercices d'application (suite)

On pourra aussi utiliser ces calculs pour décider de la convergence d'une
série numérique (CF TMB), comme l'illustre l'exercice suivant.

Exercice 6

Montrer que la série numérique
∑+∞

n=1 un est absolument convergente
avec un donné par

un =

√
n2 + n + 1

n
−
√
n + 1 .

Indication : il su�ra pour cela de montrer que un = O(1/n3/2) quand

n → +∞. a

a. Comme déjà vu, la propriété à montrer dit en particulier qu'il existe C > 0 tel que

|un| ≤ C/n3/2 pour tout n ; cela donne bien la convergence de
∑

|un| en utilisant que∑
1

n3/2
est convergente et la proposition p.1 du cours en ligne de Math 3 sur les séries

numériques.
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Solution de l'exercice 6 :

comme toujours, on veut se ramener à la proposition 5 et pour cela faire
apparaître une quantité pertinente qui tende vers 0 (dépendant de n
auquel l'énoncé impose de tendre vers +∞). En particulier, la dernière
formule de cette proposition avec α = 1

2
donne quand y → 0√

1+ y = (1+ y)1/2 = 1+
y

2
− y2

8
+ o(y2)︸ ︷︷ ︸

=o(1)×y2

,

(il est recommandé de bien connaître ce cas particulier de la racine). On
écrit maintenant

un =
√
n

(√
1+

n + 1
n2

−
√
1+

1
n

)
,

d'où, posant d'abord y = 1
n qui tend bien vers 0 quand n → +∞, on a√

1+
1
n
= 1+

1
2n

− 1
8n2

+ o

(
1
n2

)
,
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Solution de l'exercice 6 (suite) :

puis en posant y = n+1
n2

= 1
n

(
1+ 1

n

)
qui tend bien aussi vers 0, on a√

1+
n + 1
n2

= 1+
1
2
×
(
n + 1
n2

)
− 1

8
× 1

n2

(
1+

1
n

)2

+ o(1)×

((
n + 1
n2

)2
)

,

= 1+

(
1
2n

+
1
2n2

)
− 1

8n2

(
1+

2
n
+

1
n2︸ ︷︷ ︸

=o(1)

)
+ o(1)× 1

n2
× (1+ o(1))︸ ︷︷ ︸

=o(1/n2)

,

= 1+
1
2n

+
1
n2

(
1
2
− 1

8

)
+ o

(
1
n2

)
= 1+

1
2n

+
3
8n2

+ o

(
1
n2

)
.

On en déduit donc

un =
√
n

((
�
�
��1+
1
2n

+
3
8n2

+ o

(
1
n2

))
−
(
�
�
��1+
1
2n

− 1
8n2

+ o

(
1
n2

)))
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Exercices d'application (suite)

Solution de l'exercice 6 (suite) :

=
√
n

(
1
2n2

+ o

(
1
n2

))
=

1

2n3/2
(1+ o(1))︸ ︷︷ ︸

=O(1) par exemple 1

= O

(
1

n3/2

)
.

Dans la suite du cours sur l'intégrale généralisée, on aura besoin d'étudier
assez �nement le comportement de fonctions qui tendent vers ±∞ en un
point a ∈ R (a = π

2
dans l'exercice ci-dessous). Les outils de ce chapitre

s'avèreront alors très utiles.

Exercice 7 (Autour du comportement de tan en a = π
2
)

1 Donner la limite, puis un équivalent de tan x quand x → π
2
−.

2 Étudier la limite limx→π
2
,x ̸=π

2

1
cos(x)

(
tan x + 1

x−π
2

)
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Exercices d'application (suite)

Solution de l'exercice 7 :

(1) On a tan x = sin x
cos x pour x ∈ R, x /∈ π

2
+ πZ. Toujours en vue de faire

apparaître une quantité qui tende vers 0 quand x → π
2
pour appliquer la

proposition 5, on pose x = π
2
+ u, de sorte que u → 0. On écrit alors

(quand x → π
2

⇐⇒ u → 0) :

sin x = 1+ o(1) et cos x = cos
(π
2
+ u
)

= − sin u = −u + o(u) ,

soit
tan x =

1+ o(1)
−u(1+ o(1))

= −1
u
(1+ o(1)) ∼ − 1

x − π
2

,

en particulier, tan x → +∞ quand x → π
2
−.

(2) On véri�e avant de se lancer dans les calculs qu'on a bien à faire à
une forme indéterminée (on soustrait exactement à la tan l'équivalent de
la question précédente...). On va donc ra�ner le calcul précédent en
écrivant quand x → π

2
, x ̸= π

2
( ⇐⇒ u → 0, u ̸= 0) :
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Exercices d'application (suite)

Solution de l'exercice 7 (suite) :

sin x = sin
(π
2
+ u
)
= cos u = 1− u2

2
+ o(u2) et

cos x = cos
(π
2
+ u
)
= − sin u = −u +

1
6
u3 + o(u3) ,

d'où tan x =
sin x

cos x
=

1− u2

2
+ o(u2)

−u + 1
6
u3 + o(u3)

= −1
u

(
1− u2

2
+ o(u2)

)
× 1

1− 1
6
u2 + o(u2)

,

avec (posant v = 1
6
u2 + o(u2) → 0)

1

1− 1
6
u2 + o(u2)

=
1

1− v
= 1+ v + o(v) = 1+

1
6
u2 + o(u2) ,

soit au bilan tan x = − 1
u

(
1− u2

2
+ o(u2)

)
×
(
1+ 1

6
u2 + o(u2)

)
,
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Exercices d'application (suite)

Solution de l'exercice 7 (suite) :

= −1
u

(
1+ u2

(
−1
2
+

1
6︸ ︷︷ ︸

=− 1
3

)
+ o(u2)×O(1)− u4

12︸︷︷︸
=o(u2)

)
= −1

u
+
u

3
+ o

(
u1
)

car 1
u × o(u2) = 1

u × o(1)× u2 = o(u). Pour conclure, on écrit

tan x +
1

x − π
2

= −
�
��
1
u
+

u

3
+ o (u) +

�
��
1
u
= u

(
1
3
+ o(1)

)
,

et comme on a vu ci-dessus cos x = −u + o(u) = u(−1+ o(1)), on a

1
cos x

(
tan x +

1
x − π

2

)
=

�u
(
1
3
+ o(1)

)
�u(−1+ o(1))

→ −1
3
.

Pour conclure, la limite existe et vaut −1
3
.
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Merci de votre attention !
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