Chapitre 2

Séries de fonctions

Dans tout ce chapitre, K désigne R ou C. On s'intéresse a la convergence de séries de fonctions
> f ot les fonctions f, sont définies sur un méme domaine non vide D de R ou C, et a

n
valeurs dans K.

Soit (f)n>n, une suite de fonctions de D vers K (Vn > ng, f, : D — K).

W’Définition 1
On appelle série de fonctions de terme général f,, la suite de fonctions (S,,)n>n, Mo € N,
définie par

v71277/07 S’n: Z fk

k=ng

On note cette série de fonctions Z fn et S, est appelée la somme partielle d'ordre n de
n>ng
celle-ci .

LOExemple :

On a déja vu des séries de fonctions particulieres, comme :
n

x
> faol frix— — avec > fa(z) de somme € pour tout z € R,
n>0 L n>0

1
> faol fn:z — 2™ avec Y  f,(x) de somme 1‘”017 pour tout —1 < x < 1 (si on

n>ng n>ng

1
prend ng = 0 la somme est T—= pour tout —1 <z < 1).
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Dans la suite, on supposera que ng = 0 et on notera souvent la série de fonctions an.

n
On va commencer par étudier différents types de convergence d'une série de fonctions Z fn

sur A C D. !

2.1 Types de Convergence d’une série de fonctions

2.1.1 Convergence simple et convergence absolue
%Définition 2
(Convergence simple des séries de fonctions) On dit que la série de fonctions > f,

n
converge simplement (CVS) sur A C D si la suite de fonctions (S,,),, converge simplement
sur A.

gf Définition 3
On suppose que la série de fonctions Z fn converge simplement sur A C D.

n>0

1. On appelle alors la fonction somme de Z fn sur A, la fonction S : A — K définie par
n>0

Vee A, S(z)= lim S,(z)= iofn(x)

n—-+00

“+o0o
et I'on écrit S = Z fn sur A.

n=0

2. Pour n € N, on appelle le reste d’ordre n de Z fnsur A, la fonction R, : A - K
n>0
définie par

Ve A, Ruo)= 3 fila).
k=n+1

3. On a, pour tout n € N, S =S, + R, sur A et la suite de fonctions des restes (R,),
converge simplement vers la fonction nulle sur A.
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v Théoreme 1
Soit A C D. On a équivalence entre

1. la série de fonctions > f,, converge simplement sur 4,
n>0

2. pour tout z € A, la série numérique »  f,(z) converge.
n>0

Démonstration. La série de fonctions Z fn converge simplement sur A <= la suite de fonc-
n
tions des sommes partielles (S,,), CVS sur A <= Vz € A, la suite numérique (S,(z)), =

(>_ fu(x)),, converge <= Vx € A, la série numérique Y _ f,(z) converge. O
k=0

n

%Définition 4
On appelle domaine de convergence (simple) de la série de fonctions an I’ensemble

des x € D tels que la série numérique an(a:) converge (ce qui n'est autre que le domaine
n

de défintion de la fonction somme S).

v¢ Proposition 1
Si la série de fonctions an converge simplement sur A C D, alors la suite de fonctions

n
(fn)n converge simplement vers la fonction nulle sur A.

Démonstration. Evident d'aprés le Théoreme 1 et le fait que le terme général u,, d'une série
numérique » u, convergente tend vers 0 quand n — +o0. O

n

/4 Attention!

La réciproque est fausse. La convergence simple de |a suite de fonctions (f,,),, vers la fonction

nulle sur A est une condition nécessaire mais pas suffisante pour avoir la convergence simple
de la série de fonctions  _ f,, sur A.
n
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Voici un contre-exemple :

Considérons la série de fonctions E fn avec pour tout n > 1, f, : R — R définie par
n>1
x
Tr) = —
fula) =

Soit 2o € R. On a lim fn(zo) = 0. Donc (f,). CVS vers la fonction nulle sur R.

Notons que pour x5 = 0, la série numérique Z fn(0) est la série nulle donc converge et que
n>1

L. .
pour tout xg # 0, Z fn(xo) ne converge pas car Z — série de Riemann avec o = 1 donc
n>1 n>1
diverge.

Le domaine de convergence de la série de fonctions » _ f, est donc {0}.
n>1

(8 Remarque 1

Contraposée de la Proposition 1 : Si la suite de fonctions (f,,),, ne converge pas simplement
vers la fonction nulle sur A, alors la série de fonctions Z fn ne converge pas simplement sur

A !

WDéfinition 5
(Convergence absolue des séries de fonctions) On dit que la série de fonctions » f,,

n
converge absolument (CVA) sur A C D si pour tout € A, la série a termes positifs
> | fa(z)| converge dans R.

n

Autrement dit, la série de fonctions an converge absolument sur A si et seulement si la

n
série de fonctions Z | f| converge simplement sur A.
n

LOExemple :
Soit ng € N.

1. On considéere pour tout n > nyg,

fn o R - R
z — "

La série de fonctions »  f, converge simplement et absolument sur | — 1,1[.
n>ng
Le domaine de convergence de cette série de fonctions est | —1,1[ car > z” diverge

n>ng
(grossierement) pour tout = € R tel que |z| > 1, .
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De plus, la somme de la série de fonctions »  f,, sur | — 1,1[ est la fonction

n>ng
S ]1-L1 - R
1
i N
1—=x
2. On consideére cette fois pour tout n > ny,
fn: C — C
z = 2"

La série de fonctions »  f, converge simplement et absolument sur
n>no

D(0,1) ={z€C; |z| < 1}.

Le domaine de convergence de cette série de fonctions est D(0, 1) (voir TDO, Exercice
3).
De plus, la somme de la série de fonctions » _ f, sur D(0,1) est la fonction
n>ng
S : D(0,1) — C

z =z

v¢ Proposition 2

Si la série de fonctions Z fn converge absolument sur A C D, alors elle converge simplement
n

sur A.

Démonstration. Soit x € A. Comme an converge absolument sur A, alors la série numé-

n
rique Y _ | f(x)| converge et donc en particulier la série > f,,(x) converge car la convergence

n n
absolue d'une série numérique implique la convergence de la série.
Par suite Z fn converge simplement sur A. n
n

2.1.2 Convergence uniforme

On va définir, comme pour les suites de fonctions, la convergence uniforme d'une série de

fonctions ) _ f, en utilisant la suite de fonctions des sommes partielles.
n
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g/'Définition 6
(Convergence uniforme des séries de fonctions) On dit que la série de fonctions Z fn
n>0

converge uniformément (CVU) sur A C D si la suite de fonctions (S, )nen (00 Sy = > fr)
k=0

converge uniformément sur A.

¢ Proposition 3

Si la série de fonctions Z fn converge uniformément sur A C D alors elle converge simple-
n

ment sur A.

Démonstration. Evidente car la convergence uniforme de la suite de fonctions (.S,), sur A
implique sa convergence simple sur A. O

v Proposition 4

Si la série de fonctions Z fn converge uniformément sur A C D alors la suite de fonctions

n
(fn)n converge uniformément vers la fonction nulle sur A.

Démonstration. an converge uniformément sur A C D <= la suite de fonctions (S, )nen
n

converge uniformément vers S sur A. Comme pour tout n > 1, f,, = S,, — S,_1, alors (f,)x
converge uniformément vers f =S5 — S =0 sur A.
En effet, soit ¢ > 0. Comme (S,,)nen converge uniformément sur A vers S, alors

IN €N, VYn > N, Vz € A, |Su(z) — S(z)] < S
Par suite, Vn > Ny = N + 1, Vx € A,
|[fu(@)| = |Sh(z) = S(x) + S(x) = Spa(@)| < |Su(z) = S(z)| +[S(x) — Spa(2)] <€
On a donc montré que
Ve>0,dN; e N, Vn> Ny, Ve € A, |fu(z)] <€

ce qui n'est autre que la convergence uniforme de (f,,), vers la fonction nulle sur A. O
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/6 Attention!
La réciproque est fausse. La convergence uniforme de (f,), vers la fonction nulle sur A est
une condition nécessaire mais pas suffisante pour avoir la convergence uniforme de an

n
sur A.

Voici un contre-exemple :
On considere la série de fonctions Z fn avec pour tout n > 1, f, : [0,1] — R définie par
n>1

1
OnaVn>1, sup |fu(x)]=—= — 0etdonc (f,), CVU vers la fonction nulle sur [0, 1].
2€[0,1] n n—-+oo
Pourtant la série de fonctions ne converge pas uniformément sur [0, 1] puisque elle ne converge

pas simplement sur [0, 1] (on a vu avant que Y _ f,(z) ne converge qu’en z = 0).

vr Proposition 5
Soit A C D. On a équivalence entre

i) La série de fonctions an converge uniformément sur A.
n

i) La série de fonctions an converge simplement sur A et la suite de fonctions des

n
restes (R,), converge uniformément vers la fonction nulle sur A.

Démonstration. an converge uniformément sur A < 35 : A — K tel que la suite

n

de fonctions (S,), CVU vers S sur A <= 35 : A — K tel que (S,), CVS vers S sur
A et sup|S(z) — S,(z)| = sup |R,(z)] = 0 <= la série de fonctions Y _ f,, converge
T€EA r€A n—Too

n
simplement sur A et la suite de fonctions (R,,),, converge uniformément vers la fonction nulle
sur A. O

(§) Remarque 2

Pour étudier la CVU de la suite de fonctions (R,,), vers la fonction nulle sur A, on utilise
les méthodes vues dans le Chapitre 1 pour la CVU des suites de fonctions :

i) pour montrer la CVU de (R,), vers la fonction nulle sur A, pour tout n € N, on
peut majorer |R,(z)| pour tout x € A par un réel positif «,, indépendant de x, avec

o, — 0.
n—-+00

i) pour montrer que (R,), ne converge pas uniformément vers la fonction nulle sur A,

on cherche a trouver (x,,), suite d'éléments de A tel que R, (z,) = 0.
n (e.9]
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Comme sup | R, (z)| > |R,(z,)| pour tout n, on déduit que sup |R,(z)] - O.
z€A z€A n=>:+00

iii) On calcule exactement, pour tout n € N, sup|R,(z)| (assez rare qu'on puisse le
z€A

faire, on peut par exemple pour les séries géométriques convergentes) puis on voit si
sup | R, (z)| tend ou ne tend pas vers 0 quand n — +oo.
€A

v Proposition 6

(Critére de Cauchy uniforme) La série de fonctions an converge uniformément sur
n

A C D si et seulement si

S i)

k=q+1

Ve > 0,dN e N,Vp > q > N, Vx € A, < €.

Démonstration. an converge uniformément sur A C D <= la suite de fonctions (.5,),

n
converge uniformément sur A <= la suite de fonctions (.5,), vérifie le critére de Cauchy
uniforme sur A <=

< €.

Ep: fr(z)

k=q+1

Ve>0,3N eN,Vp>qg>N,Vr € A, |S,(z) —S,(x)| =

v¢ Proposition 7

(Rappel : Critére spécial séries alternées) Soit Y u, une série réelle alternée (cad
n>0
Uplni1 < 0 Vn € N ce qui est équivalent a dire que le signe de u,, change a chaque n ou
que ((—1)"uy,), est de signe constant).
Si (Jun|)nen est décroissante et converge vers 0, on a alors Y u, converge . De plus, on a
n

+o0o
Vn €N, |R,| =| Z ug| < Ui

k=n+1

et pour tout n € N, R,, est du méme signe que ;.
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Démonstration. On va faire la démonstration quand u,, est du signe de (—1)" donc ug > 0,
méme principe si uy < 0.

On va montrer que les sous-suites de sommes partielles (v,), = (S2,)n €t (7n)n = (S2ns1)n
sont adjacentes. Plus précisément, on va montrer (v,),, = (S2,)n est décroissante et (1), =
(Sont1)n €st croissante et que liTEn(Sgn — Sons1) = 0.

Comme (|uy|), est décroissante ( et que u,, est du signe de (—1)"), on a

Vn € N, Sopio — Sop = Uopia + Uspi1 = |Usnia] — [ugni1] < 0, donc (Ss,), est décroissante

et Vn € N, Soig — Sont1 = Uonts + Ugpra = —|Uopys| + |Uons2| > 0, donc (Sa,41), est
croissante.
D’autre part, Ss, — Sop11 = —us2,41 tend vers 0 quand n — +o0.

Donc les 2 suites (S3;,),, et (S2n+1)n sont adjacentes (on a en particulier pour tout p,q € N,
Ty < vq) et convergent donc vers la méme limite S. On déduit donc que la suite des sommes
partielles (S,,), converge vers S cad la série Zun converge.

Par monotonie, on a d'une part pour tout nne N, Soni1 < 5 < Sy, ce qui implique que
Uopi1 = Soni1 — Son < Rop = S — S5, < 0 et d'autre part, pour tout n € N, Sp,.1 < 5 <
Son+2 ce qui implique que 0 < Ry = 5 — Sopp1 < Songa — Song1 = Uana-

On déduit alors que |R,| < |u,11| pour tout n € N et que R,, est du méme signe que U,
pour tout n € N. O

v Théoréme 2

(Critere de convergence uniforme pour les séries alternées)

On suppose D C R. Soit an une série de fonctions tel que pour tout x € A C D,
n

> fu(x) est une série alternée vérifiant le critére spécial des séries alternées (CSSA), cad

n
(| fn(x)])n décroissante et converge vers 0.
Si on suppose de plus que (f,), converge uniformément vers la fonction nulle sur A, alors

la série de fonctions an converge uniformément sur A.
n

Démonstration. D'apres le critére spécial des séries alternées (CSSA), Z fn(z) converge pour
n

tout z € A, donc an CVS sur A, et on a de plus

Ve e A, VYn € N, |Ru(2)] < | faga(z)],

donc
VneN, 0<sup|R,(z)| <sup|fori(z)] (2.1)
z€A z€A

Comme (f,,)n converge uniformément vers la fonction nulle sur A (et donc sup | f1(z)] —
€A n——+oo

0) , I'inégalité (2.1) nous donne que la suite de fonctions (R,), CVU vers la fonction nulle
sur A.
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Par suite, comme an CVS sur A et (R,), CVU vers la fonction nulle sur A, on déduit de
la Proposition 5 que an CVU sur A. O]

2.1.3 Convergence normale

¢ Définition 7

(Convergence normale des séries de fonctions) Soit (f,,),, une suite de fonctions de D
a valeur dans K tel que pour tout n, f,, est bornée.

On dit que la série de fonctions an converge normalement (CVN) sur A C D si la série
n

numérique > || falloo,4 converge, ol || finlloo.a = oy | fu(2)].
HAS

n

v Proposition 8
Si la série de fonctions an converge normalement sur A C D alors la suite de fonctions

n
(fn)n converge uniformément vers la fonction nulle sur A.

Démonstration. Evidente car Z fn CVN sur A <— Zsup | fn(z)| converge et donc le terme

n TEA

général de cette série numerlque sup | fr(2)] = 0. O
n—+00

/6 Attention!

La convergence uniforme de (f,,), vers la fonction nulle sur A est une condition nécessaire
mais pas suffisante pour avoir la convergence normale de an sur A.

En effet, considérons de nouveau par exemple la série de fonctions Z fn avec pour toutn > 1,
n>1

fu 1 [0,1] — R définie par f,(z) = .
n

1
OnaVn>1, sup |fu(z)]=—= — 0etdonc (f,), CVU vers la fonction nulle sur [0, 1].
z€[0,1] n n—+oo

Pourtant la série de fonctions ne converge pas normalement sur [0,1] car  sup |f,(z)| =

n>17€[0,1] B
L
Z — diverge.

n>1
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v¢r Théoréme 3

Si la série de fonctions > f,, converge normalement sur A C D, alors elle converge absolu-
n
ment sur A.

De plus, elle converge uniformément sur A.

Démonstration. Montrons tout d’abord que CV N = CV A.
Supposons que Z fn converge normalement sur A C D.

Soit z € A. On:

Vn €N, 0 < [fu(2)] < |[falloc.a- (2.2)
Comme par définition de la convergence normale de Y f,, on @ »_ || fnllcc,a converge, on

déduit de (2.2) que Y |f.(x)| converge pour tout = € A.

n
Par suite » _ f,, converge absolument sur A.
n

Nous allons montrer maintenant que CVN — C'VU.
Supposons que Z fn converge normalement sur A C D alors par définition, la suite numérique

n

<Z sup | fx(z ) est convergente et donc de Cauchy. On a donc,

OIG
P
Ve>0,dN € N, Vp > q¢ > N, Zsup|fk |—Zsup|fk, = Y suplfi(z)] <e
k=0 €A k=0 €A k=g+1 €A
Comme pour tout = € A,
P P

Yo @) < Y fklx)] < Z Sup|fk )|,

k=g+1 k=q+1 k=q+1 T€A
on obtient alors

p
Ve >0,dN e N, Vp > q > N, Vz € A, Z fr(x)] <e.

k=q+1

Par suite, Z fn vérifie le critere de Cauchy uniforme sur A et donc converge uniformément

sur A (Prop?osition 6). O
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(8 Remarque 3

On a donc
1. CVN = CVA= CVS,
2. CVN = CVU = CVS.

3. Toutes les autres implications sont fausses.

LOExemple :
CVS =% CVA CVU % CVN et CVU % CV A.

Considérons par exemple la série de fonctions Z fn avec pour tout n > 1, f, : Rt = R
n>1

_]_ n
définie par f,(z) = ( +) pour tout x € RT .
n+x

Pour tout 2y € R™, Z fn(zo) est une série alternée qui vérifie le CSSA (a vérifier) et donc
n>1
converge. Par suite, la série de fonctions Z fn CVS sur RT.
n>1

D’apres le CSSA, on a en plus Vo > 0, Vn € N*, |R,(2)| < | fn+1(x)] et donc

Vn € N*, 0 < sup |R,(z)| < sup |fusi(2)] (2.3)
z€RT zeRT
1 . z
Comme Vn > 1, sup |f.(z)] = — — 0, donc (f,), converge uniformément vers la
zER+ n n—+oo

fonction nulle sur R*, on déduit de (2.3) que (R,), converge uniformément aussi vers la
fonction nulle sur R,
Par suite, Z f,, converge uniformément sur R
n>1

Montrons maintenant que ) _ f,, ne converge pas absolument sur R*. Soit 2o € R". On a

n>1

1 1

D =,
n-—+xy +ton
Comme la série numérique »  — diverge, on déduit que > |f, ()| diverge et donc > f,
n>1 n>1 n>1
ne converge pas absolument sur R (ni sur aucune partie de R™) et donc Z fn ne converge
n>1

pas non plus normalement sur R" (on peut aussi montrer la non convergence normale

Vn>1,0 < |fu(zo)| =

directement car Vn > 1, sup |f.(z)] = sup —— = |f.(0)] = — et la série numérique
n

zERT zeRt N+ T a
1
> — diverge).

n>1
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LOExemple :
CVS=%CVU, CVA=% CVNetCVA= CVU.

Considérons par exemple la série de fonctions Z fn avec f,, :] = 1,1[— R avec f,(z) = 2™
> fn CVS et CVA sur | — 1,1] car pour tout = €] — 1,1[, > |2"| = D |z|" est une série

géométrique de raison |z| € [0, 1] donc convergente.
Montrons que an ne converge ni uniformément ni normalement sur | — 1,1[. On a
n

VYneN, sup |fu(x)]= sup |z|"= sup 2"=1 — 1#0
z€]-1,1] z€]-1,1[ z€[0,1] n—+o0

et donc (f,,), ne converge pas uniformément vers la fonction nulle sur | — 1, 1] et par suite

an ne converge ni uniformément ni normalement sur | — 1,1[.
n

(8)Remarque 4

En pratique, pour étudier la convergence normale d'une série de fonctions an sur A, on
n
procéde souvent ainsi :

i) sisup|fu(x)] - 0 cad (f,), ne converge pas uniformément vers la fonction nulle
z€A B=re9

sur A, alors Z fn ne converge pas normalement sur A. Il suffit par exemple de trouver
n
une suite (z,), d'éléments de A tel que f,(x,) —-» 0.
n—-+00

i) pour montrer la CVN de > f, sur A, on peut pour tout n € N, majorer |f,(z)| pour

n
tout x € A par un réel positif a,,, indépendant de z, telle que la série a termes positifs
> a, converge.
n

iii) pour montrer que an ne converge pas normalement sur A, il suffit de trouver une

n
suite (2,,), d’éléments de A tel que > |f,(z,)| diverge.

Comme pour tout 1, || fullco,a = | fn(n)| , on déduit que > || fulloo,4 diverge aussi.
n

iv) Pour montrer ou nier la CVN de an sur A, on peut étudier pour tout n € N, les

n
variations de la fonction f,, sur A pour trouver explicitement || f,|lco.4 et déduire la
nature de la série numérique » _ || fu]lco,a- On peut s’assurer tout d'abord de la CVS

n

de ) f, sur A avant le calcul éventuel de sup |f,(z)|.
n z€EA
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2.2 Régularité des sommes des séries de fonctions

Attention, comme pour les suites de fonctions, la convergence simple d'une série de fonctions
an ne permet pas en général de préserver les propriétés de régularité des f, (continuité,

n

dérivabilité, intégrabilité...) pour la fonction somme S, ni d'intervertir limite et somme, somme
et intégrale, somme et dérivée!

La question est donc : sous quelles conditions supplémentaires nous pourrons obtenir ces
résultats ?

Nous verrons dans cette partie que la convergence uniforme des séries de fonctions nous
permettra de conserver ces propriétés. En effet, a I'aide des propriétés de régularité de la limite
d'une suite de fonctions du Chapitre 1, nous allons montrer des propriétés similaires pour les
(fonctions) sommes des séries de fonctions : il suffit d'appliquer les résultats de régularité du
Chapitre 1 a la suite de fonctions des sommes partielles (S, ).

2.2.1 Interversion de limite et somme

¢y Théoreme 4
Soit (f)n>0 une suite de fonctions de D dans K et soit A C D. Soit a un point adhérent a
Aoua=+ocosi AC R n'est pas majoré ou —oco si A C R n’est pas minoré. On suppose
que

i) pour tout n € N, la fonction f,, admet une limite finie en a, notée ,,,

i) la série de fonctions ) f,, converge uniformément sur A.

n>0
+00 +oo
Alors la série numérique > [, converge et la fonction somme S = Y f,, admet > _ I, pour
n n=0 n=0

limite en a. Autrement dit, on peut intervertir limite et somme et on a

ti (3 3(0)) = 3= (1 £0)).

Démonstration. La preuve découle directement du théoréeme de la double limite (Chapitre 1,
Théoreme 1) appliqué a la suite des sommes partielles (S,,),, (pour tout n € N, S, admet une
n

limite finie en a égale 3 ) [). O
k=0

() Remarque 5

Bien justifier la CVU de la série de fonctions (généralement obtenue par CVN ou gréce a la
majoration du reste associée au CSSA).
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2.2.2 Convergence uniforme et continuité

Le théoréme suivant découle du Théoreme 4.

vy Théoreme 5
Soit (fn)nen une suite de fonctions de D dans K et soit A C D et a € D tels que :

i) Vn € N, f, est continue sur A.

ii) la série de fonctions Z fn converge uniformément sur A.
n>0
oo
Alors la fonction somme S = Z fn est continue sur A.

n=0

v¢ Corollaire 1
On suppose que D C R. Soit (f,)n>0 une suite de fonctions de D vers K et soit I un
intervalle de R inclus dans D tels que

i) Vn € N, f,, est continue sur I,

ii) la série de fonctions Z fn converge uniformément sur tout segment de 7,
n>0
(0.9]
Alors la fonction somme S = Z fn est continue sur .
n=0

Démonstration. On applique le Théoréeme 5 sur [a, b] pour tout a,b € I, a < b. On obtient

alors que S est continue sur [a,b] pour tout a,b € I, a <betdoncsur |J [a,b]=1. O
a,bel;a<b
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2.2.3 Intégration, dérivation

Dans cette partie, nous allons étudier les propriétés d'intégration et dérivation des (fonctions)

sommes de séries de fonctions, mais cela ne concerne que les fonctionsde D C Rdans K =R
ou C.

Convergence uniforme et intégration

7y Théoreme 6
(Interversion de somme-intégrale sur un segment) Soient a,b € R tels que a < b et
(fn)n une suite de fonctions de [a, b] dans K. On suppose que

i) pour tout n € N, f, est continue sur [a, b],

i) la série de fonctions > f,, converge uniformément sur [a, b].
n>0
b
Alors la série numérique > [ f,(z)dz converge et on a
n>0"

[ <,§ fn(:c)> dz = 2 (/b fn(x)dx> .

Démonstration. On applique le théoreme d'interversion de limite et intégrale sur un segment
pour les suites de fonctions (Chapitre 1, Théoréme 3) a la suite des sommes partielles (S,),
et on utilise la linéarité de l'intégrale. O]

Théoreme d’intégration terme a terme

vy Théoreme 7

(Théoréme d’intégration terme a terme, admis)

Soit (f)nen une suite de fonctions de I, intervalle de R, a valeurs dans K. On suppose que
i) pour tout n € N, f,, est continue par morceaux et intégrable sur I,

i) la série de fonctions > f, converge simplement sur I et la fonction somme S est
n>0
continue par morceaux sur [,

iii) la série numérique » / | f(z)|dx converge.
n>0"1
Alors la fonction S est intégrable et on a

+oo

/IS(I>dI' :;g/lfn(x)dac ie. /ICZZJ‘}L) (x)dx = Z/Ifn(a:)dx

n=0
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Convergence uniforme et dérivation

v Théoréme 8

(Séries de fonctions de classe C') Soit (f,),en une suite de fonctions de I, intervalle de
R (non réduit a un point), a valeurs dans K. On suppose que

i) pour tout n € N, f,, est de classe C* sur 1,
i) il existe a € I tel que > f,,(a) converge,

iii) la série de fonctions des dérivées Z:f,’I converge uniformément sur tout segment de

n

1.
+oo
Alors la série de fonctions » _ f,, converge simplement sur I et la fonction somme S = > f,
n n=0

est de classe O sur I avec
+00 ! 400
I (an> => fi sur [
n=0 n=0
cad .
—+o0 +o0
Veel, S'(z):= (Z fn> (x) = Z fi(x).
n=0 n=0

De plus, an converge uniformément sur tout segment de /.
n

En pratique, on montre souvent dans ii) que an converge simplement sur /.

n

Notons aussi que si »  f, converge uniformément sur [ alors iii) est vérifiée.

n

Démonstration. On applique le théoréeme de dérivation des suites de fonctions (Chapitre 1,
Théoreme 5) a la suite des sommes partielles (S, ). O
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En réitérant le Théoreme 8 pour calculer les dérivées d’ordre supérieur, on obtient le théoreme
suivant :

v¢r Théoréme 9
(Séries de fonctions de classe C?) Soit (f,,)nen une suite de fonctions de I, intervalle de
R non réduit a un point, a valeurs dans K et soit p € N*. On suppose que

i) pour tout n € N, f,, est de classe C? sur I,

ii) pour tout k£ =0,1,....p — 1, la série de fonctions Z fff) converge simplement sur I,

iii) la série de fonctions » fP) converge uniformément sur tout segment de I.

n
+00
Alors S = Z fn est de classe C” sur [ et on a

n=0
+oo (k) +00
Vk=0,1,...,p, Sk = (Z fn> = Z fT(Lk) sur [.
n=0 n=0

De plus, pour tout £ =0,...,p — 1, Zf,,gk) converge uniformément sur tout segment de /.

n



2.2. REGULARITE DES SOMMES DES SERIES DE FONCTIONS 19

Application aux théorémes précédents dans les exercices suivants :

gExercice 1

Pour tout n € N, soit
fo @ RT — R

efTLI

x [—
1+ n?

1. a. Montrer que »  f, converge normalement sur R™.
n

+o0o
b. En déduire que la fonction somme S = > f, est continue sur R™.
n=0
c. Montrer que lim S(z) = 1 (utiliser le théoréeme d'interversion de somme et

T——+00
limite).

2. a. Montrer que ) _ f} converge normalement sur [a, +00|, Va > 0.
b. En déduire que S est de classe C* sur |0, +-o0 et que

+00 nr

ne-
Ve >0, S'(z) = — .
x (x) nzz:o T
Correction de I'Exercice 1
1 1
1. . = ~ — - écroi
a. OnaVn € N, xseuﬂg | fr ()] T2 e (car y — e ™ est décroissante sur

RY).
Comme ) | — est une série de Riemann avec o = 2 > 1 donc convergente, on
n

n
déduit que Z sup | fn(x)| converge et donc que Z fn converge normalement sur
R+' n TERT n

b. On a

i) Vn € N, f,, est continue sur R™ car exponentielle est continue sur R.

i) D'aprés a), la série de fonctions » _ f,, converge normalement sur R* et donc
n
ticulier ell iformément sur R
en particulier elle converge uniformément sur R™.
+o0o
Par suite, d'aprés le Théoréme 5, on déduit que S = Z fn est continue sur R,

n=0

c. On a R" n'est pas majoré et
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i) Soit n € N.
-Sin=0, fo(r) =1 pour tout x € R et donc ll)r_{l fo(z) =1 finie.

i . — 0 finie.
Sin>1, xl_lg{loo fn(z) = 0 finie
i) D’aprés a), la série de fonctions » _ f,, converge normalement sur R* et donc
n

en particulier elle converge uniformément sur R,

Par suite, d'apres le Théoreme d'interversion de somme et limite (Théoreme 4), on

i (if fn($)> =5 (tim_fule)

0 T—>+00

et donc

r—r-+00

+oo
lim S(z)=14+> 0=1
n=1

2. Les f, sont de classe C* sur R" avec Vn € N, Vo > 0, f(z) = Toa2
n

Remarque :
i) Notons que Zf;(()) diverge et donc la série Zf,’L ne converge pas simplement

n
sur R* et donc ne converge ni uniformément ni normalement sur R

i) Notons aussi que Y f ne converge pas normalement sur ]0, +oo[ car sup |, (z)| =
n 2€]0,+o00[

n 1

1
~ — et — diverge.

i) On peut également montrer que Zﬂl ne converge pas uniformémement sur
n

1 =
]0, +00[ en montrant que Rlyn()‘ 7 0ol Ri(z)= Y filx).
non o k=n+1
a. Soit a > 0.
OnaVvVn € N |/ ()] ne ™ of 1) (on a utilisé le fait que
n ,  su ) = —— = o= utili it qu
xe[a,-&l?oo[ " 1+ n? +o n? a
ne—na
y — e ™ est décroissante sur R et que lim n? = lim ne ™™ =0
n—+oo 1 4+ n? n—-+o0o
ne "¢ 1

par croissance comparée donc o(—)).

14 n2 +oo n2
1 L :
Comme ) — est une série de Riemann avec a = 2 > 1 donc convergente, on
n>1
déduit que > sup |f,(x)| converge et donc que > fi converge normalement
n :EG[(Z,“FOO[ n

sur [a, +oo.
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b. On a
i) Pour tout n € N, f,, est C" sur ]0, +0o] car exponentielle est C*' sur R.
i) an converge simplement sur ]0,+o00| car d'apres 1.a), an converge

n
normalement sur R™ et donc en particulier simplement sur R+ et donc sur

10, +o00[C RT.
iii) D'aprés 2.b), Y f, converge normalement sur tout intervalle [a,+oco| avec

n
a > 0 et donc en particulier elle converge uniformément sur [a, +00| pour

tout a > 0. Par suite ) _ f/, converge uniformément sur tout segment [a, b] C

10, +00] (car pour tout 0 < a < b < 400, [a,b] C [a,+00]).

On déduit alors du Théoréme 8, que S est de classe C* sur |0, +-00[ et que pour
tout x > 0,

+o0 —nx

+00
. , _ —ne

gExercice 2

Pour tout n € N, soit
fn o R - R

r — I

1. Montrer que ) _ f, converge normalement sur [—a, a] pour tout 0 < a < 1.

n

2. En déduire que Va €] — 1, 1], Z— —1In(1 —a).

Correction de I'Exercice 2

1. Soit 0 < a < 1.

OnaVn e N, sup |f.(z)] = sup 2" =a" (car z — |z
z€[—a,a] z€[0,a]

croissante sur R"). Comme Za" est une série géométrique de raison 0 < g=a < 1

n‘_

|z|™ est paire et est

n
donc convergente, on déduit que an converge normalement sur [—a,a] pour tout
n

O<a<l.
2. Soit —1 < a < 1. Trois cas :
+oo Nn
a. Sia=0,ona» —=0=—1In(1-0).
n=1

b. SiO<ax<l1, on a
i) Vn € N, f, est continue sur [0, a.
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i) D'aprés 1), > f,, converge normalement sur [—a, a] et donc en particulier elle

n
converge uniformément sur [—a, a] et donc sur [0, a] C [—a, a.
Par suite d'apres le théoréeme d'interversion de somme et intégrale sur un segment
(Théoreme 6), on a

g (/0 fn(a:)da:) _ /0 @Z fn(:c)> dr

£ ()= [ (£)

n=0

et donc

On obtient alors

+o0o an+1 a 1
Y= [ e
n+1 o 1—=x

n=0
= [=In |l —2[[;=5
= [=In(1 - 2)[;=5
=—In(1l — a).
+oo a™
Par suite, Y . — = —1In(1 — a) pour tout 0 < a < 1.
n=1

c. si —1 < a < 0, on montre comme dans b., en travaillant cette fois sur le segment

+0c0 am
[a,0], que ) = —In(1 —a).
n=1
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