
Chapitre 2

Séries de fonctions

Dans tout ce chapitre, K désigne R ou C. On s’intéresse à la convergence de séries de fonctions∑
n

fn où les fonctions fn sont définies sur un même domaine non vide D de R ou C, et à

valeurs dans K.

Soit (fn)n≥n0 une suite de fonctions de D vers K (∀n ≥ n0, fn : D → K).

On appelle série de fonctions de terme général fn, la suite de fonctions (Sn)n≥n0 , n0 ∈ N,
définie par

∀n ≥ n0, Sn =
n∑

k=n0

fk.

On note cette série de fonctions
∑

n≥n0

fn et Sn est appelée la somme partielle d’ordre n de

celle-ci .

Définition 1

On a déja vu des séries de fonctions particulières, comme :∑
n≥0

fn où fn : x → xn

n! avec
∑
n≥0

fn(x) de somme ex pour tout x ∈ R,

∑
n≥n0

fn où fn : x → xn avec
∑

n≥n0

fn(x) de somme xn0
1

1 − x
pour tout −1 < x < 1 (si on

prend n0 = 0 la somme est 1
1 − x

pour tout −1 < x < 1).

Exemple :

1
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Dans la suite, on supposera que n0 = 0 et on notera souvent la série de fonctions
∑

n

fn.

On va commencer par étudier différents types de convergence d’une série de fonctions
∑

n

fn

sur A ⊂ D.

2.1 Types de Convergence d’une série de fonctions

2.1.1 Convergence simple et convergence absolue

(Convergence simple des séries de fonctions) On dit que la série de fonctions
∑

n

fn

converge simplement (CVS) sur A ⊂ D si la suite de fonctions (Sn)n converge simplement
sur A.

Définition 2

On suppose que la série de fonctions
∑
n≥0

fn converge simplement sur A ⊂ D.

1. On appelle alors la fonction somme de
∑
n≥0

fn sur A, la fonction S : A → K définie par

∀x ∈ A, S(x) = lim
n→+∞

Sn(x) =
+∞∑
n=0

fn(x)

et l’on écrit S =
+∞∑
n=0

fn sur A.

2. Pour n ∈ N, on appelle le reste d’ordre n de
∑
n≥0

fn sur A , la fonction Rn : A → K

définie par

∀x ∈ A, Rn(x) =
+∞∑

k=n+1
fk(x).

3. On a, pour tout n ∈ N, S = Sn + Rn sur A et la suite de fonctions des restes (Rn)n

converge simplement vers la fonction nulle sur A.

Définition 3
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Soit A ⊂ D. On a équivalence entre
1. la série de fonctions

∑
n≥0

fn converge simplement sur A,

2. pour tout x ∈ A, la série numérique
∑
n≥0

fn(x) converge.

Théorème 1

Démonstration. La série de fonctions
∑

n

fn converge simplement sur A ⇐⇒ la suite de fonc-

tions des sommes partielles (Sn)n CVS sur A ⇐⇒ ∀x ∈ A, la suite numérique (Sn(x))n =

(
n∑

k=0
fk(x))n converge ⇐⇒ ∀x ∈ A, la série numérique

∑
n

fn(x) converge.

On appelle domaine de convergence (simple) de la série de fonctions
∑

n

fn l’ensemble

des x ∈ D tels que la série numérique
∑

n

fn(x) converge (ce qui n’est autre que le domaine

de défintion de la fonction somme S).

Définition 4

Si la série de fonctions
∑

n

fn converge simplement sur A ⊂ D, alors la suite de fonctions

(fn)n converge simplement vers la fonction nulle sur A.

Proposition 1

Démonstration. Evident d’après le Théorème 1 et le fait que le terme général un d’une série
numérique

∑
n

un convergente tend vers 0 quand n → +∞.

La réciproque est fausse. La convergence simple de la suite de fonctions (fn)n vers la fonction
nulle sur A est une condition nécessaire mais pas suffisante pour avoir la convergence simple
de la série de fonctions

∑
n

fn sur A.

Attention!
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Voici un contre-exemple :
Considérons la série de fonctions

∑
n≥1

fn avec pour tout n ≥ 1, fn : R → R définie par

fn(x) = x

n
.

Soit x0 ∈ R. On a lim
n

fn(x0) = 0. Donc (fn)n CVS vers la fonction nulle sur R.
Notons que pour x0 = 0, la série numérique

∑
n≥1

fn(0) est la série nulle donc converge et que

pour tout x0 ̸= 0,
∑
n≥1

fn(x0) ne converge pas car
∑
n≥1

1
n

série de Riemann avec α = 1 donc

diverge.
Le domaine de convergence de la série de fonctions

∑
n≥1

fn est donc {0}.

Contraposée de la Proposition 1 : Si la suite de fonctions (fn)n ne converge pas simplement
vers la fonction nulle sur A, alors la série de fonctions

∑
n

fn ne converge pas simplement sur

A.

Remarque 1

(Convergence absolue des séries de fonctions) On dit que la série de fonctions
∑

n

fn

converge absolument (CVA) sur A ⊂ D si pour tout x ∈ A, la série à termes positifs∑
n

|fn(x)| converge dans R.

Autrement dit, la série de fonctions
∑

n

fn converge absolument sur A si et seulement si la

série de fonctions
∑

n

|fn| converge simplement sur A.

Définition 5

Soit n0 ∈ N.
1. On considère pour tout n ≥ n0,

fn : R → R
x 7→ xn.

La série de fonctions
∑

n≥n0

fn converge simplement et absolument sur ] − 1, 1[.

Le domaine de convergence de cette série de fonctions est ] − 1, 1[ car
∑

n≥n0

xn diverge

(grossièrement) pour tout x ∈ R tel que |x| > 1, .

Exemple :
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De plus, la somme de la série de fonctions
∑

n≥n0

fn sur ] − 1, 1[ est la fonction

S : ] − 1, 1[ → R
x 7→ xn0

1
1 − x

.

2. On considère cette fois pour tout n ≥ n0,

fn : C → C
z 7→ zn.

La série de fonctions
∑

n≥n0

fn converge simplement et absolument sur

D(0, 1) = {z ∈ C; |z| < 1}.

Le domaine de convergence de cette série de fonctions est D(0, 1) (voir TD0, Exercice
3).
De plus, la somme de la série de fonctions

∑
n≥n0

fn sur D(0, 1) est la fonction

S : D(0, 1) → C
z 7→ zn0

1
1 − z

.

Si la série de fonctions
∑

n

fn converge absolument sur A ⊂ D, alors elle converge simplement

sur A.

Proposition 2

Démonstration. Soit x ∈ A. Comme
∑

n

fn converge absolument sur A, alors la série numé-

rique
∑

n

|fn(x)| converge et donc en particulier la série
∑

n

fn(x) converge car la convergence

absolue d’une série numérique implique la convergence de la série.
Par suite

∑
n

fn converge simplement sur A.

2.1.2 Convergence uniforme
On va définir, comme pour les suites de fonctions, la convergence uniforme d’une série de
fonctions

∑
n

fn en utilisant la suite de fonctions des sommes partielles.
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(Convergence uniforme des séries de fonctions) On dit que la série de fonctions
∑
n≥0

fn

converge uniformément (CVU) sur A ⊂ D si la suite de fonctions (Sn)n∈N (où Sn =
n∑

k=0
fk)

converge uniformément sur A.

Définition 6

Si la série de fonctions
∑

n

fn converge uniformément sur A ⊂ D alors elle converge simple-

ment sur A.

Proposition 3

Démonstration. Evidente car la convergence uniforme de la suite de fonctions (Sn)n sur A
implique sa convergence simple sur A.

Si la série de fonctions
∑

n

fn converge uniformément sur A ⊂ D alors la suite de fonctions

(fn)n converge uniformément vers la fonction nulle sur A.

Proposition 4

Démonstration.
∑

n

fn converge uniformément sur A ⊂ D ⇐⇒ la suite de fonctions (Sn)n∈N

converge uniformément vers S sur A. Comme pour tout n ≥ 1, fn = Sn − Sn−1, alors (fn)n

converge uniformément vers f = S − S = 0 sur A.
En effet, soit ϵ > 0. Comme (Sn)n∈N converge uniformément sur A vers S, alors

∃N ∈ N, ∀n ≥ N, ∀x ∈ A, |Sn(x) − S(x)| <
ϵ

2 .

Par suite, ∀n ≥ N1 = N + 1, ∀x ∈ A,

|fn(x)| = |Sn(x) − S(x) + S(x) − Sn−1(x)| ≤ |Sn(x) − S(x)| + |S(x) − Sn−1(x)| < ϵ.

On a donc montré que

∀ϵ > 0, ∃N1 ∈ N, ∀n ≥ N1, ∀x ∈ A, |fn(x)| < ϵ

ce qui n’est autre que la convergence uniforme de (fn)n vers la fonction nulle sur A.
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La réciproque est fausse. La convergence uniforme de (fn)n vers la fonction nulle sur A est
une condition nécessaire mais pas suffisante pour avoir la convergence uniforme de

∑
n

fn

sur A.

Attention!

Voici un contre-exemple :
On considère la série de fonctions

∑
n≥1

fn avec pour tout n ≥ 1, fn : [0, 1] → R définie par

fn(x) = x

n
.

On a ∀n ≥ 1, sup
x∈[0,1]

|fn(x)| = 1
n

→
n→+∞

0 et donc (fn)n CVU vers la fonction nulle sur [0, 1].

Pourtant la série de fonctions ne converge pas uniformément sur [0, 1] puisque elle ne converge
pas simplement sur [0, 1] (on a vu avant que

∑
n

fn(x) ne converge qu’en x = 0).

Soit A ⊂ D. On a équivalence entre
i) La série de fonctions

∑
n

fn converge uniformément sur A.

ii) La série de fonctions
∑

n

fn converge simplement sur A et la suite de fonctions des

restes (Rn)n converge uniformément vers la fonction nulle sur A.

Proposition 5

Démonstration.
∑

n

fn converge uniformément sur A ⇐⇒ ∃S : A → K tel que la suite

de fonctions (Sn)n CVU vers S sur A ⇐⇒ ∃S : A → K tel que (Sn)n CVS vers S sur
A et sup

x∈A
|S(x) − Sn(x)| = sup

x∈A
|Rn(x)| →

n→+∞
0 ⇐⇒ la série de fonctions

∑
n

fn converge

simplement sur A et la suite de fonctions (Rn)n converge uniformément vers la fonction nulle
sur A.

Pour étudier la CVU de la suite de fonctions (Rn)n vers la fonction nulle sur A, on utilise
les méthodes vues dans le Chapitre 1 pour la CVU des suites de fonctions :

i) pour montrer la CVU de (Rn)n vers la fonction nulle sur A, pour tout n ∈ N, on
peut majorer |Rn(x)| pour tout x ∈ A par un réel positif αn, indépendant de x, avec
αn →

n→+∞
0.

ii) pour montrer que (Rn)n ne converge pas uniformément vers la fonction nulle sur A,
on cherche à trouver (xn)n suite d’éléments de A tel que Rn(xn) ↛

n→+∞
0 .

Remarque 2
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Comme sup
x∈A

|Rn(x)| ≥ |Rn(xn)| pour tout n, on déduit que sup
x∈A

|Rn(x)| ↛
n→+∞

0.

iii) On calcule exactement, pour tout n ∈ N, sup
x∈A

|Rn(x)| (assez rare qu’on puisse le

faire, on peut par exemple pour les séries géométriques convergentes) puis on voit si
sup
x∈A

|Rn(x)| tend ou ne tend pas vers 0 quand n → +∞.

(Critère de Cauchy uniforme) La série de fonctions
∑

n

fn converge uniformément sur

A ⊂ D si et seulement si

∀ϵ > 0, ∃N ∈ N, ∀p > q ≥ N, ∀x ∈ A,

∣∣∣∣∣∣
p∑

k=q+1
fk(x)

∣∣∣∣∣∣ < ϵ.

Proposition 6

Démonstration.
∑

n

fn converge uniformément sur A ⊂ D ⇐⇒ la suite de fonctions (Sn)n

converge uniformément sur A ⇐⇒ la suite de fonctions (Sn)n vérifie le critère de Cauchy
uniforme sur A ⇐⇒

∀ϵ > 0, ∃N ∈ N, ∀p > q ≥ N, ∀x ∈ A, |Sp(x) − Sq(x)| =

∣∣∣∣∣∣
p∑

k=q+1
fk(x)

∣∣∣∣∣∣ < ϵ.

(Rappel : Critère spécial séries alternées) Soit
∑
n≥0

un une série réelle alternée (càd

unun+1 ≤ 0 ∀n ∈ N ce qui est équivalent à dire que le signe de un change à chaque n ou
que ((−1)nun)n est de signe constant).
Si (|un|)n∈N est décroissante et converge vers 0, on a alors

∑
n

un converge . De plus, on a

∀n ∈ N, |Rn| = |
+∞∑

k=n+1
uk| ≤ |un+1|

et pour tout n ∈ N, Rn est du même signe que un+1.

Proposition 7
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Démonstration. On va faire la démonstration quand un est du signe de (−1)n donc u0 ≥ 0,
même principe si u0 ≤ 0.
On va montrer que les sous-suites de sommes partielles (vn)n = (S2n)n et (rn)n = (S2n+1)n

sont adjacentes. Plus précisément, on va montrer (vn)n = (S2n)n est décroissante et (rn)n =
(S2n+1)n est croissante et que lim

n
(S2n − S2n+1) = 0.

Comme (|un|)n est décroissante ( et que un est du signe de (−1)n), on a
∀n ∈ N, S2n+2 − S2n = u2n+2 + u2n+1 = |u2n+2| − |u2n+1| ≤ 0, donc (S2n)n est décroissante
et ∀n ∈ N, S2n+3 − S2n+1 = u2n+3 + u2n+2 = −|u2n+3| + |u2n+2| ≥ 0, donc (S2n+1)n est
croissante.
D’autre part, S2n − S2n+1 = −u2n+1 tend vers 0 quand n → +∞.
Donc les 2 suites (S2n)n et (S2n+1)n sont adjacentes (on a en particulier pour tout p, q ∈ N,
rp ≤ vq) et convergent donc vers la même limite S. On déduit donc que la suite des sommes
partielles (Sn)n converge vers S càd la série

∑
n

un converge.

Par monotonie, on a d’une part pour tout n ∈ N, S2n+1 ≤ S ≤ S2n ce qui implique que
u2n+1 = S2n+1 − S2n ≤ R2n = S − S2n ≤ 0 et d’autre part, pour tout n ∈ N, S2n+1 ≤ S ≤
S2n+2 ce qui implique que 0 ≤ R2n+1 = S − S2n+1 ≤ S2n+2 − S2n+1 = u2n+2.
On déduit alors que |Rn| ≤ |un+1| pour tout n ∈ N et que Rn est du même signe que un+1
pour tout n ∈ N.

(Critère de convergence uniforme pour les séries alternées)
On suppose D ⊂ R. Soit

∑
n

fn une série de fonctions tel que pour tout x ∈ A ⊂ D,∑
n

fn(x) est une série alternée vérifiant le critère spécial des séries alternées (CSSA), càd

(|fn(x)|)n décroissante et converge vers 0.
Si on suppose de plus que (fn)n converge uniformément vers la fonction nulle sur A, alors
la série de fonctions

∑
n

fn converge uniformément sur A.

Théorème 2

Démonstration. D’après le critère spécial des séries alternées (CSSA),
∑

n

fn(x) converge pour

tout x ∈ A, donc
∑

n

fn CVS sur A, et on a de plus

∀x ∈ A, ∀n ∈ N, |Rn(x)| ≤ |fn+1(x)|,

donc
∀n ∈ N, 0 ≤ sup

x∈A
|Rn(x)| ≤ sup

x∈A
|fn+1(x)|. (2.1)

Comme (fn)n converge uniformément vers la fonction nulle sur A (et donc sup
x∈A

|fn+1(x)| →
n→+∞

0) , l’inégalité (2.1) nous donne que la suite de fonctions (Rn)n CVU vers la fonction nulle
sur A.
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Par suite, comme
∑

n

fn CVS sur A et (Rn)n CVU vers la fonction nulle sur A, on déduit de

la Proposition 5 que
∑

n

fn CVU sur A.

2.1.3 Convergence normale

(Convergence normale des séries de fonctions) Soit (fn)n une suite de fonctions de D
à valeur dans K tel que pour tout n, fn est bornée.
On dit que la série de fonctions

∑
n

fn converge normalement (CVN) sur A ⊂ D si la série

numérique
∑

n

∥fn∥∞,A converge, où ∥fn∥∞,A = sup
x∈A

|fn(x)|.

Définition 7

Si la série de fonctions
∑

n

fn converge normalement sur A ⊂ D alors la suite de fonctions

(fn)n converge uniformément vers la fonction nulle sur A.

Proposition 8

Démonstration. Évidente car
∑

n

fn CVN sur A ⇐⇒
∑

n

sup
x∈A

|fn(x)| converge et donc le terme

général de cette série numérique sup
x∈A

|fn(x)| →
n→+∞

0.

La convergence uniforme de (fn)n vers la fonction nulle sur A est une condition nécessaire
mais pas suffisante pour avoir la convergence normale de

∑
n

fn sur A.

Attention!

En effet, considérons de nouveau par exemple la série de fonctions
∑
n≥1

fn avec pour tout n ≥ 1,

fn : [0, 1] → R définie par fn(x) = x

n
.

On a ∀n ≥ 1, sup
x∈[0,1]

|fn(x)| = 1
n

→
n→+∞

0 et donc (fn)n CVU vers la fonction nulle sur [0, 1].

Pourtant la série de fonctions ne converge pas normalement sur [0, 1] car
∑
n≥1

sup
x∈[0,1]

|fn(x)| =

∑
n≥1

1
n

diverge.
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Si la série de fonctions
∑

n

fn converge normalement sur A ⊂ D, alors elle converge absolu-

ment sur A.
De plus, elle converge uniformément sur A.

Théorème 3

Démonstration. Montrons tout d’abord que CV N =⇒ CV A.
Supposons que

∑
n

fn converge normalement sur A ⊂ D.

Soit x ∈ A. On a
∀n ∈ N, 0 ≤ |fn(x)| ≤ ∥fn∥∞,A. (2.2)

Comme par définition de la convergence normale de
∑

n

fn, on a
∑

n

∥fn∥∞,A converge, on

déduit de (2.2) que
∑

n

|fn(x)| converge pour tout x ∈ A.

Par suite
∑

n

fn converge absolument sur A.

Nous allons montrer maintenant que CV N =⇒ CV U .
Supposons que

∑
n

fn converge normalement sur A ⊂ D alors par définition, la suite numérique(
n∑

k=0
sup
x∈A

|fk(x)|
)

n

est convergente et donc de Cauchy. On a donc,

∀ϵ > 0, ∃N ∈ N, ∀p > q ≥ N,

∣∣∣∣∣
p∑

k=0
sup
x∈A

|fk(x)| −
q∑

k=0
sup
x∈A

|fk(x)|
∣∣∣∣∣ =

p∑
k=q+1

sup
x∈A

|fk(x)| < ϵ.

Comme pour tout x ∈ A,∣∣∣∣∣∣
p∑

k=q+1
fk(x)

∣∣∣∣∣∣ ≤
p∑

k=q+1
|fk(x)| ≤

p∑
k=q+1

sup
x∈A

|fk(x)|,

on obtient alors

∀ϵ > 0, ∃N ∈ N, ∀p > q ≥ N, ∀x ∈ A,

∣∣∣∣∣∣
p∑

k=q+1
fk(x)

∣∣∣∣∣∣ < ϵ.

Par suite,
∑

n

fn vérifie le critère de Cauchy uniforme sur A et donc converge uniformément

sur A (Proposition 6).
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On a donc
1. CV N ⇒ CV A ⇒ CV S,
2. CV N ⇒ CV U ⇒ CV S.
3. Toutes les autres implications sont fausses.

Remarque 3

CV S ⇏ CV A, CV U ⇏ CV N et CV U ⇏ CV A.
Considérons par exemple la série de fonctions

∑
n≥1

fn avec pour tout n ≥ 1, fn : R+ → R

définie par fn(x) = (−1)n

n + x
pour tout x ∈ R+ .

Pour tout x0 ∈ R+,
∑
n≥1

fn(x0) est une série alternée qui vérifie le CSSA (à vérifier) et donc

converge. Par suite, la série de fonctions
∑
n≥1

fn CVS sur R+.

D’après le CSSA, on a en plus ∀x ≥ 0, ∀n ∈ N∗, |Rn(x)| ≤ |fn+1(x)| et donc

∀n ∈ N∗, 0 ≤ sup
x∈R+

|Rn(x)| ≤ sup
x∈R+

|fn+1(x)|. (2.3)

Comme ∀n ≥ 1, sup
x∈R+

|fn(x)| = 1
n

→
n→+∞

0, donc (fn)n converge uniformément vers la

fonction nulle sur R+, on déduit de (2.3) que (Rn)n converge uniformément aussi vers la
fonction nulle sur R+.
Par suite,

∑
n≥1

fn converge uniformément sur R+.

Montrons maintenant que
∑
n≥1

fn ne converge pas absolument sur R+. Soit x0 ∈ R+. On a

∀n ≥ 1, 0 ≤ |fn(x0)| = 1
n + x0

∼
+∞

1
n

.

Comme la série numérique
∑
n≥1

1
n

diverge, on déduit que
∑
n≥1

|fn(x0)| diverge et donc
∑
n≥1

fn

ne converge pas absolument sur R+ (ni sur aucune partie de R+) et donc
∑
n≥1

fn ne converge

pas non plus normalement sur R+ (on peut aussi montrer la non convergence normale
directement car ∀n ≥ 1, sup

x∈R+
|fn(x)| = sup

x∈R+

1
n + x

= |fn(0)| = 1
n

et la série numérique∑
n≥1

1
n

diverge).

Exemple :
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CV S ⇏ CV U , CV A ⇏ CV N et CV A ⇏ CV U .
Considérons par exemple la série de fonctions

∑
n

fn avec fn :] − 1, 1[→ R avec fn(x) = xn.∑
n

fn CVS et CVA sur ] − 1, 1[ car pour tout x ∈] − 1, 1[,
∑

n

|xn| =
∑

n

|x|n est une série

géométrique de raison |x| ∈ [0, 1[ donc convergente.
Montrons que

∑
n

fn ne converge ni uniformément ni normalement sur ] − 1, 1[. On a

∀n ∈ N, sup
x∈]−1,1[

|fn(x)| = sup
x∈]−1,1[

|x|n = sup
x∈[0,1[

xn = 1 →
n→+∞

1 ̸= 0

et donc (fn)n ne converge pas uniformément vers la fonction nulle sur ] − 1, 1[ et par suite∑
n

fn ne converge ni uniformément ni normalement sur ] − 1, 1[.

Exemple :

En pratique, pour étudier la convergence normale d’une série de fonctions
∑

n

fn sur A, on

procède souvent ainsi :
i) si sup

x∈A
|fn(x)| ↛

n→+∞
0 càd (fn)n ne converge pas uniformément vers la fonction nulle

sur A, alors
∑

n

fn ne converge pas normalement sur A. Il suffit par exemple de trouver

une suite (xn)n d’éléments de A tel que fn(xn) ↛
n→+∞

0.

ii) pour montrer la CVN de
∑

n

fn sur A, on peut pour tout n ∈ N, majorer |fn(x)| pour

tout x ∈ A par un réel positif an, indépendant de x, telle que la série à termes positifs∑
n

an converge.

iii) pour montrer que
∑

n

fn ne converge pas normalement sur A, il suffit de trouver une

suite (xn)n d’éléments de A tel que
∑

n

|fn(xn)| diverge.

Comme pour tout n, ∥fn∥∞,A ≥ |fn(xn)| , on déduit que
∑

n

∥fn∥∞,A diverge aussi.

iv) Pour montrer ou nier la CVN de
∑

n

fn sur A, on peut étudier pour tout n ∈ N, les

variations de la fonction fn sur A pour trouver explicitement ∥fn∥∞,A et déduire la
nature de la série numérique

∑
n

∥fn∥∞,A. On peut s’assurer tout d’abord de la CVS

de
∑

n

fn sur A avant le calcul éventuel de sup
x∈A

|fn(x)|.

Remarque 4
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2.2 Régularité des sommes des séries de fonctions
Attention, comme pour les suites de fonctions, la convergence simple d’une série de fonctions∑

n

fn ne permet pas en général de préserver les propriétés de régularité des fn (continuité,

dérivabilité, intégrabilité...) pour la fonction somme S, ni d’intervertir limite et somme, somme
et intégrale, somme et dérivée !
La question est donc : sous quelles conditions supplémentaires nous pourrons obtenir ces
résultats ?
Nous verrons dans cette partie que la convergence uniforme des séries de fonctions nous
permettra de conserver ces propriétés. En effet, à l’aide des propriétés de régularité de la limite
d’une suite de fonctions du Chapitre 1, nous allons montrer des propriétés similaires pour les
(fonctions) sommes des séries de fonctions : il suffit d’appliquer les résultats de régularité du
Chapitre 1 à la suite de fonctions des sommes partielles (Sn)n.

2.2.1 Interversion de limite et somme

Soit (fn)n≥0 une suite de fonctions de D dans K et soit A ⊂ D. Soit a un point adhérent à
A ou a = +∞ si A ⊂ R n’est pas majoré ou −∞ si A ⊂ R n’est pas minoré. On suppose
que

i) pour tout n ∈ N, la fonction fn admet une limite finie en a, notée ln,
ii) la série de fonctions

∑
n≥0

fn converge uniformément sur A.

Alors la série numérique
∑

n

ln converge et la fonction somme S =
+∞∑
n=0

fn admet
+∞∑
n=0

ln pour

limite en a. Autrement dit, on peut intervertir limite et somme et on a

lim
x→a

(+∞∑
n=0

fn(x)
)

=
∞∑

n=0

(
lim
x→a

fn(x)
)

.

Théorème 4

Démonstration. La preuve découle directement du théorème de la double limite (Chapitre 1,
Théorème 1) appliqué à la suite des sommes partielles (Sn)n (pour tout n ∈ N, Sn admet une

limite finie en a égale à
n∑

k=0
lk).

Bien justifier la CVU de la série de fonctions (généralement obtenue par CVN ou grâce à la
majoration du reste associée au CSSA).

Remarque 5
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2.2.2 Convergence uniforme et continuité
Le théorème suivant découle du Théorème 4.

Soit (fn)n∈N une suite de fonctions de D dans K et soit A ⊂ D et a ∈ D tels que :
i) ∀n ∈ N, fn est continue sur A.
ii) la série de fonctions

∑
n≥0

fn converge uniformément sur A.

Alors la fonction somme S =
∞∑

n=0
fn est continue sur A.

Théorème 5

On suppose que D ⊂ R. Soit (fn)n≥0 une suite de fonctions de D vers K et soit I un
intervalle de R inclus dans D tels que

i) ∀n ∈ N, fn est continue sur I,
ii) la série de fonctions

∑
n≥0

fn converge uniformément sur tout segment de I,

Alors la fonction somme S =
∞∑

n=0
fn est continue sur I.

Corollaire 1

Démonstration. On applique le Théorème 5 sur [a, b] pour tout a, b ∈ I, a < b. On obtient
alors que S est continue sur [a, b] pour tout a, b ∈ I, a < b et donc sur

⋃
a,b∈I;a<b

[a, b] = I.
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2.2.3 Intégration, dérivation
Dans cette partie, nous allons étudier les propriétés d’intégration et dérivation des (fonctions)
sommes de séries de fonctions, mais cela ne concerne que les fonctions de D ⊂ R dans K = R
ou C.

Convergence uniforme et intégration

(Interversion de somme-intégrale sur un segment) Soient a, b ∈ R tels que a < b et
(fn)n une suite de fonctions de [a, b] dans K. On suppose que

i) pour tout n ∈ N, fn est continue sur [a, b],
ii) la série de fonctions

∑
n≥0

fn converge uniformément sur [a, b].

Alors la série numérique
∑
n≥0

∫ b

a
fn(x)dx converge et on a

∫ b

a

(+∞∑
n=0

fn(x)
)

dx =
+∞∑
n=0

(∫ b

a
fn(x)dx

)
..

Théorème 6

Démonstration. On applique le théorème d’interversion de limite et intégrale sur un segment
pour les suites de fonctions (Chapitre 1, Théorème 3) à la suite des sommes partielles (Sn)n

et on utilise la linéarité de l’intégrale.

Théorème d’intégration terme à terme

(Théorème d’intégration terme à terme, admis)
Soit (fn)n∈N une suite de fonctions de I, intervalle de R, à valeurs dans K. On suppose que

i) pour tout n ∈ N, fn est continue par morceaux et intégrable sur I,
ii) la série de fonctions

∑
n≥0

fn converge simplement sur I et la fonction somme S est

continue par morceaux sur I,

iii) la série numérique
∑
n≥0

∫
I

|fn(x)|dx converge.

Alors la fonction S est intégrable et on a
∫

I
S(x)dx =

+∞∑
n=0

∫
I

fn(x)dx i.e.
∫

I

(+∞∑
n=0

fn

)
(x)dx =

+∞∑
n=0

∫
I

fn(x)dx.

Théorème 7
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Convergence uniforme et dérivation

(Séries de fonctions de classe C1) Soit (fn)n∈N une suite de fonctions de I, intervalle de
R (non réduit à un point), à valeurs dans K. On suppose que

i) pour tout n ∈ N, fn est de classe C1 sur I,
ii) il existe a ∈ I tel que

∑
n

fn(a) converge,

iii) la série de fonctions des dérivées
∑

n

f ′
n converge uniformément sur tout segment de

I.

Alors la série de fonctions
∑

n

fn converge simplement sur I et la fonction somme S =
+∞∑
n=0

fn

est de classe C1 sur I avec

S ′ :=
(+∞∑

n=0
fn

)′

=
+∞∑
n=0

f ′
n sur I

càd

∀x ∈ I, S ′(x) :=
(+∞∑

n=0
fn

)′

(x) =
+∞∑
n=0

f ′
n(x).

De plus,
∑

n

fn converge uniformément sur tout segment de I.

Théorème 8

En pratique, on montre souvent dans ii) que
∑

n

fn converge simplement sur I.

Notons aussi que si
∑

n

f ′
n converge uniformément sur I alors iii) est vérifiée.

Démonstration. On applique le théorème de dérivation des suites de fonctions (Chapitre 1,
Théorème 5) à la suite des sommes partielles (Sn)n.
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En réitérant le Théorème 8 pour calculer les dérivées d’ordre supérieur, on obtient le théorème
suivant :

(Séries de fonctions de classe Cp) Soit (fn)n∈N une suite de fonctions de I, intervalle de
R non réduit à un point, à valeurs dans K et soit p ∈ N∗. On suppose que

i) pour tout n ∈ N, fn est de classe Cp sur I,
ii) pour tout k = 0, 1, ..., p − 1, la série de fonctions

∑
n

f (k)
n converge simplement sur I,

iii) la série de fonctions
∑

n

f (p)
n converge uniformément sur tout segment de I.

Alors S =
+∞∑
n=0

fn est de classe Cp sur I et on a

∀k = 0, 1, ..., p, S(k) :=
(+∞∑

n=0
fn

)(k)

=
+∞∑
n=0

f (k)
n sur I.

De plus, pour tout k = 0, ..., p − 1,
∑

n

f (k)
n converge uniformément sur tout segment de I.

Théorème 9
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Application aux théorèmes précédents dans les exercices suivants :

Pour tout n ∈ N, soit
fn : R+ → R

x 7→ e−nx

1 + n2

1. a. Montrer que
∑

n

fn converge normalement sur R+.

b. En déduire que la fonction somme S =
+∞∑
n=0

fn est continue sur R+.

c. Montrer que lim
x→+∞

S(x) = 1 (utiliser le théorème d’interversion de somme et
limite).

2. a. Montrer que
∑

n

f ′
n converge normalement sur [a, +∞[, ∀a > 0.

b. En déduire que S est de classe C1 sur ]0, +∞[ et que

∀x > 0, S ′(x) = −
+∞∑
n=0

ne−nx

1 + n2 .

Exercice 1

Correction de l’Exercice 1

1. a. On a ∀n ∈ N, sup
x∈R+

|fn(x)| = 1
1 + n2 ∼

+∞

1
n2 (car y → e−ny est décroissante sur

R+).
Comme

∑
n

1
n2 est une série de Riemann avec α = 2 > 1 donc convergente, on

déduit que
∑

n

sup
x∈R+

|fn(x)| converge et donc que
∑

n

fn converge normalement sur

R+.
b. On a

i) ∀n ∈ N, fn est continue sur R+ car exponentielle est continue sur R.
ii) D’après a), la série de fonctions

∑
n

fn converge normalement sur R+ et donc

en particulier elle converge uniformément sur R+.

Par suite, d’après le Théorème 5, on déduit que S =
+∞∑
n=0

fn est continue sur R+.

c. On a R+ n’est pas majoré et
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i) Soit n ∈ N.
- Si n = 0, f0(x) = 1 pour tout x ∈ R+ et donc lim

x→+∞
f0(x) = 1 finie.

- Si n ≥ 1, lim
x→+∞

fn(x) = 0 finie.

ii) D’après a), la série de fonctions
∑

n

fn converge normalement sur R+ et donc

en particulier elle converge uniformément sur R+.
Par suite, d’après le Théorème d’interversion de somme et limite (Théorème 4), on
a

lim
x→+∞

(+∞∑
n=0

fn(x)
)

=
+∞∑
n=0

(
lim

x→+∞
fn(x)

)
et donc

lim
x→+∞

S(x) = 1 +
+∞∑
n=1

0 = 1.

2. Les fn sont de classe C1 sur R+ avec ∀n ∈ N, ∀x ≥ 0, f ′
n(x) = −ne−nx

1 + n2 .
Remarque :

i) Notons que
∑

n

f ′
n(0) diverge et donc la série

∑
n

f ′
n ne converge pas simplement

sur R+ et donc ne converge ni uniformément ni normalement sur R+.

ii) Notons aussi que
∑

n

f ′
n ne converge pas normalement sur ]0, +∞[ car sup

x∈]0,+∞[
|f ′

n(x)| =

n

1 + n2 ∼
+∞

1
n

et
∑
n≥1

1
n

diverge.

iii) On peut également montrer que
∑

n

f ′
n ne converge pas uniformémement sur

]0, +∞[ en montrant que
∣∣∣∣R1,n( 1

n
)
∣∣∣∣ ↛

n→+∞
0 où R1,n(x) =

+∞∑
k=n+1

f ′
k(x).

a. Soit a > 0.
On a ∀n ∈ N, sup

x∈[a,+∞[
|f ′

n(x)| = ne−na

1 + n2 =
+∞

o( 1
n2 ) (on a utilisé le fait que

y → e−ny est décroissante sur R+ et que lim
n→+∞

n2 ne−na

1 + n2 = lim
n→+∞

ne−na = 0

par croissance comparée donc ne−na

1 + n2 =
+∞

o( 1
n2 )).

Comme
∑
n≥1

1
n2 est une série de Riemann avec α = 2 > 1 donc convergente, on

déduit que
∑

n

sup
x∈[a,+∞[

|f ′
n(x)| converge et donc que

∑
n

f ′
n converge normalement

sur [a, +∞[.
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b. On a
i) Pour tout n ∈ N, fn est C1 sur ]0, +∞[ car exponentielle est C1 sur R.
ii)

∑
n

fn converge simplement sur ]0, +∞[ car d’après 1.a),
∑

n

fn converge

normalement sur R+ et donc en particulier simplement sur R+ et donc sur
]0, +∞[⊂ R+.

iii) D’après 2.b),
∑

n

f ′
n converge normalement sur tout intervalle [a, +∞[ avec

a > 0 et donc en particulier elle converge uniformément sur [a, +∞[ pour
tout a > 0. Par suite

∑
n

f ′
n converge uniformément sur tout segment [a, b] ⊂

]0, +∞[ (car pour tout 0 < a < b < +∞, [a, b] ⊂ [a, +∞[).
On déduit alors du Théorème 8, que S est de classe C1 sur ]0, +∞[ et que pour
tout x > 0,

S ′(x) =
+∞∑
n=0

f ′
n(x) =

+∞∑
n=0

−ne−nx

1 + n2 .

Pour tout n ∈ N, soit
fn : R → R

x 7→ xn

1. Montrer que
∑

n

fn converge normalement sur [−a, a] pour tout 0 < a < 1.

2. En déduire que ∀a ∈] − 1, 1[,
+∞∑
n=1

an

n
= − ln(1 − a).

Exercice 2

Correction de l’Exercice 2
1. Soit 0 < a < 1.

On a ∀n ∈ N, sup
x∈[−a,a]

|fn(x)| = sup
x∈[0,a]

xn = an (car x → |xn| = |x|n est paire et est

croissante sur R+). Comme
∑

n

an est une série géométrique de raison 0 ≤ q = a < 1

donc convergente, on déduit que
∑

n

fn converge normalement sur [−a, a] pour tout
0 < a < 1.

2. Soit −1 < a < 1. Trois cas :

a. Si a = 0, on a
+∞∑
n=1

0n

n
= 0 = − ln(1 − 0).

b. Si 0<a<1, on a
i) ∀n ∈ N, fn est continue sur [0, a].
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ii) D’après 1),
∑

n

fn converge normalement sur [−a, a] et donc en particulier elle

converge uniformément sur [−a, a] et donc sur [0, a] ⊂ [−a, a].
Par suite d’après le théorème d’interversion de somme et intégrale sur un segment
(Théorème 6), on a

+∞∑
n=0

(∫ a

0
fn(x)dx

)
=
∫ a

0

(+∞∑
n=0

fn(x)
)

dx

et donc
+∞∑
n=0

(∫ a

0
xndx

)
=
∫ a

0

(+∞∑
n=0

xn

)
dx.

On obtient alors
+∞∑
n=0

an+1

n + 1 =
∫ a

0

1
1 − x

dx

= [− ln |1 − x|]x=a
x=0

= [− ln(1 − x)]x=a
x=0

= − ln(1 − a).

Par suite,
+∞∑
n=1

an

n
= − ln(1 − a) pour tout 0 < a < 1.

c. si −1 < a < 0, on montre comme dans b., en travaillant cette fois sur le segment

[a, 0], que
+∞∑
n=1

an

n
= − ln(1 − a).
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