
Chapitre 1

Suites de fonctions

Dans tout ce chapitre, K désigne R ou C. On s’intéresse à la convergence des suites de
fonctions (fn)n où les fonctions fn sont définies sur un même domaine non vide D de R ou
C, et à valeurs dans K (fn : D → K). Le module sur C est noté | . |, |a + ib| =

√
a2 + b2

pour tout a, b ∈ R.

1.1 Convergence simple, convergence uniforme d’une suite
de fonctions

Soit (fn)n∈N une suite d’applications de D dans K et f : D → K.
1. On dit que la suite de fonctions (fn)n converge simplement (CVS) vers f sur A ⊂ D

si pour tout x ∈ A, la suite numérique (fn(x))n converge vers f(x) càd

∀x ∈ A, lim
n→+∞

fn(x) = f(x).

Autrement dit, (fn)n CVS vers f sur A si

∀x ∈ A, ∀ϵ > 0, ∃n0 ∈ N; ∀n ≥ n0, |fn(x) − f(x)| < ϵ,

où n0 dépend de ϵ et de x.

La fonction f est alors appelée la limite simple de la suite de fonctions (fn)n sur
A et on note f = lim

n
fn sur A.

Définition 1
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2. On dit que la suite de fonctions (fn)n converge uniformément (CVU) vers f sur A si

∀ϵ > 0, ∃n0 ∈ N; ∀n ≥ n0, ∀x ∈ A, |fn(x) − f(x)| < ϵ,

où n0 ne dépend que de ϵ. Cette propriété est équivalente à :

sup
x∈A

|fn(x) − f(x)| →
n→+∞

0

(ce qui suppose que fn − f est bornée à partir d’un certain rang).

Notons que si (fn)n converge uniformément vers f sur A, alors (fn)n converge sim-
plement vers f sur A. Attention ! Réciproque fausse !

Soit, pour tout n ∈ N, fn : [0, 1] −→ R
x 7−→ xn.

On a
i) (fn)n CVS sur [0, 1] vers f : [0, 1] −→ R

x 7−→

0 si x ∈ [0, 1[
1 si x = 1.

ii) (fn)n ne converge pas uniformément sur [0, 1].
En effet, s’il y avait CVU, ce serait vers f ; or, pour tout n, sup

x∈[0,1]
|fn(x) − f(x)| =

1 →
n→+∞

1 ̸= 0.

iii) Il ne suffit pas d’écarter 1 : pas de CVU sur [0, 1[ puisque pour tout n, sup
x∈[0,1[

|fn(x) −

f(x)| = 1 →
n→+∞

1 ̸= 0.

iv) Pour a ∈]0, 1[, (fn)n converge uniformément vers f (fonction nulle) sur [0, a]. En effet,
pour tout n,

sup
x∈[0,a]

|fn(x) − f(x)| = an →
n→+∞

0.

Exemple :

Figure 1.1 – les graphes des fn, n ≥ 1
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(Critère de Cauchy uniforme) Une suite de fonctions (fn)n de D dans K converge
uniformément sur A ⊂ D si et seulement si elle vérifie le critère de Cauchy uniforme suivant
sur A :

∀ϵ > 0, ∃N ∈ N; ∀p, q ≥ N, ∀x ∈ A, |fp(x) − fq(x)| < ϵ.

Proposition 1

Démonstration. Supposons que (fn)n converge uniformément sur A ⊂ D vers une fonction
f : A → K.
Soit ϵ > 0. Il existe alors n0 ∈ N tel que pour tout n ≥ n0 et pour tout x ∈ A, on a
|fn(x) − f(x)| <

ϵ

2 .
On a alors pour tout p, q ≥ n0 et pour tout x ∈ A, on a |fp(x) − fq(x)| ≤ |fp(x) − f(x)| +
|f(x) − fq(x)| < ϵ.
D’où (fn)n vérifie le critère de Cauchy uniforme sur A.

Réciproquement, supposons que (fn)n vérifie le critère de Cauchy uniforme sur A. Montrons
alors que (fn)n converge uniformément sur A.
On va commencer par montrer que (fn)n converge simplement sur A. Soit a ∈ A.
Soit ϵ > 0. Comme (fn)n vérifie le critère de Cauchy uniforme sur A,

∃N ∈ N; ∀p, q ≥ N, ∀x ∈ A, |fp(x) − fq(x)| < ϵ. (1.1)

En particulier, on a pour tout p, q ≥ N , |fp(a) − fq(a)| < ϵ. Par suite, (fn(a))n est de
Cauchy dans K donc converge vers la ∈ K.
On a donc montré que la suite de fonctions (fn)n converge simplement sur A vers la fonction
f : A → K qui à x ∈ A associe lx.
Montrons maintenant que (fn)n converge uniformément vers f sur A.
Soit ϵ > 0. En passant à la limite quand q → +∞ dans (1.1) (comme (fn)n vérifie le critère
de Cauchy uniforme sur A), on obtient

∃N ∈ N; ∀p ≥ N, ∀x ∈ A, lim
q→+∞

|fp(x) − fq(x)| = |fp(x) − f(x)| ≤ ϵ.

D’où (fn)n converge uniformément vers f sur A.

Méthodes pratiques :
Plan d’étude standard pour étudier la convergence d’une suite de fonctions (fn)n sur A :

1. CVS : fixer x dans A et étudier la convergence de la suite numérique (fn(x))n, ce qui
fournit la fonction limite f sur A le cas échéant (si nécessaire, distinguer différents cas
selon la valeur de x) ;

2. CVU : Supposons que (fn)n CVS vers f sur A.



4 CHAPITRE 1. SUITE DE FONCTIONS

a. Pour montrer la CVU de (fn)n vers f sur A, il suffit de chercher pour tout n, un ma-
jorant αn (indépendant de x) de {|fn(x)−f(x)|; x ∈ A} tel que la suite numérique
(αn)n converge vers 0. On a alors la CVU puisque ∀n, 0 ≤ sup

x∈A
|fn(x)−f(x)| ≤ αn.

b. Pour nier la convergence uniforme de (fn)n vers f sur A, il suffit de trouver une
suite (xn)n d’éléments de A telle que la suite numérique (fn(xn) − f(xn))n ne
converge pas vers 0.
En effet, si (fn)n CVU vers f sur A, alors pour toute suite (xn)n d’éléments de A,
on a

∀n, 0 ≤ |fn(xn) − f(xn)| ≤ sup
A

|fn − f |

et donc (fn(xn) − f(xn))n converge vers 0 par encadrement.
c. Pour montrer ou pour nier la convergence uniforme de (fn)n vers f sur A, on peut

éventuellement déterminer la valeur exacte de sup
A

|fn − f |.

d. En l’absence de convergence uniforme sur A , on peut parfois établir la convergence
uniforme sur certaines parties de A (en restreignant le domaine).

1.2 Régularité des limites des suites de fonctions
La convergence simple d’une suite de fonctions (fn)n ne permet pas de préserver la régularité
des fn (continuité, dérivabilité, intégrabilité...) au passage à la limite ni d’intervertir deux
limites, ni limite-intégrale, ni limite-dérivée.
La question est donc : sous quelles conditions supplémentaires nous pourrons obtenir ces
résultats ? Nous verrons dans cette partie que la convergence uniforme nous permettra de
conserver ces propriétés.

1.2.1 Interversion des limites
On ne peut pas toujours intervertir les limites ! On revient à l’exemple de la suite de fonctions
(fn)n avec pour tout n ∈ N, fn : [0, 1] → R qui à x associe xn. La suite (fn)n converge
simplement vers la fonction f définie sur [0, 1] par f(x) = 0 pour x ∈ [0, 1[ et f(1) = 1.
On a lim

x→1−

(
lim

n→+∞
xn
)

= 0 et lim
n→+∞

(
lim

x→1−
xn
)

= 1.

Soit A une partie de R (respectivement de C). Un point a ∈ R (respectivement a ∈ C) est
dit adhérent à A si tout intervalle ouvert centré en a (respectivement toute boule ouverte
(disque ouvert) centrée en a) contient au moins un élément de A.

Remarquons qu’un point a ∈ A est adhérent à A.

Définition 2
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(Théorème de la double limite) Soit (fn)n une suite de fonctions de A dans K. Soit a
un point adhérent à A ou a = +∞ si A ⊂ R n’est pas majoré ou a = −∞ si A ⊂ R n’est
pas minoré. On suppose que

i) pour tout n, fn admet en a une limite finie ln ∈ K,
ii) la suite de fonctions (fn)n converge uniformément vers f sur A.

Alors la suite numérique (ln)n converge dans K vers une limite l et f admet l comme limite
en a. Autrement dit, on peut intervertir les limites et on a

lim
x→a

(
lim

n→+∞
fn(x)

)
= lim

n→+∞

(
lim
x→a

fn(x)
)

.

Théorème 1

Démonstration. Nous allons commencer par montrer la convergence de la suite numérique
(ln)n. Pour cela, nous allons montrer que c’est une suite de Cauchy.
Soit ϵ > 0. Comme (fn)n converge uniformément vers f sur A, elle vérifie alors le critère de
Cauchy uniforme sur A : il existe donc un n0 ∈ N tel que pour tout p, q ∈ N avec p, q ≥ n0,
on a pour tout x ∈ A,

|fp(x) − fq(x)| < ϵ.

En faisant tendre x → a, on obtient |lp − lq| ≤ ϵ. On a donc montré que
∀ϵ > 0, ∃n0 ∈ N, ∀p, q ≥ n0, |lp − lq| ≤ ϵ.

Autrement dit, (ln)n est une suite de Cauchy de K et donc convergente. Notons l sa limite.
Il reste à montrer que f(x) → l quand x → a.
Soit ϵ > 0. Pour tout x ∈ A et tout n ∈ N, on a
|f(x)− l| = |f(x)−fn(x)+fn(x)− ln + ln − l| ≤ |f(x)−fn(x)|+ |fn(x)− ln|+ |ln − l|. (1.2)

Comme (fn)n converge uniformément vers f , il existe n1 ∈ N tel que

∀n ≥ n1, ∀x ∈ A, |fn(x) − f(x)| <
ϵ

3 (1.3)

D’autre part , ln →
n→+∞

l, donc il existe n2 ∈ N tel que

∀n ≥ n2, |ln − l| <
ϵ

3 . (1.4)

Prenons n = max(n1, n2). Comme lim
x→a

fn(x) = ln, il existe η > 0 tel que

∀x ∈ A, |x − a| < η ⇒ |fn(x) − ln| <
ϵ

3 . (1.5)

En utilisant (1.3) , (1.4) et (1.5) dans (1.2), on déduit que ∀x ∈ A tel que |x − a| < η, on
a |f(x) − l| < ϵ. On a donc montré que

∀ϵ > 0, ∃η >; ∀x ∈ A, |x − a| < η ⇒ |f(x) − l| < ϵ.

D’où lim
x→a

f(x) = l.



6 CHAPITRE 1. SUITE DE FONCTIONS

1.2.2 Convergence uniforme et continuité
Le théorème suivant découle du Théorème 1.

Soit (fn)n une suite de fonctions de A dans K telle que :
i) pour tout n ∈ N, fn est continue sur A,
ii) la suite de fonctions (fn)n converge uniformément vers f sur A.

Alors f est continue sur A.

Théorème 2

En reprenant l’exemple de la suite de fonctions (fn)n avec pour tout n ∈ N, fn : [0, 1] → R
qui à x associe xn, on voit que sans la convergence uniforme de la suite de fonctions (fn)n

on peut perdre la continuité de la fonction limite f .

Remarque 1

1.2.3 Intégration, dérivation
Dans cette partie, nous allons étudier l’intégration, dérivation des (fonctions) limites de suites
de fonctions, mais cela ne concerne que les fonctions de D ⊂ R dans K = R ou C.

1. Soient a, b ∈ R tels que a < b et f : [a, b] → K. On dit que f est continue par
morceaux s’il existe une subdivision (ai)i=0,...,p de [a, b] telle que a = a0 < a1 < ... <
ai < ... < ap = b avec pour tout i = 0, ..., p − 1, la restriction de f à ]ai, ai+1[ admet
un prolongement continu sur [ai, ai+1].

2. Soit I un intervalle de R et f : I → K. On dit que f est continue par morceaux si elle
l’est sur tout segment de I.

Définition 3
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Convergence uniforme et intégration

(Interversion de limite-intégrale sur un segment) Soient a, b ∈ R tels que a < b et
(fn)n une suite de fonctions de [a, b] dans K.
On suppose que

i) pour tout n ∈ N, fn est continue,
ii) la suite de fonctions (fn)n converge uniformément vers une fonction f sur [a, b].

Alors la suite numérique
(∫ b

a
fn(x)dx

)
n

converge et on a

lim
n→+∞

∫ b

a
fn(x) dx =

∫ b

a
f(x) dx

i.e.
lim

n→+∞

∫ b

a
fn(x) dx =

∫ b

a
lim

n→+∞
fn(x) dx

Ce résultat reste vraie si on suppose que pour tout n ∈ N, fn est continue par morceaux
sur [a, b] et que (fn)n converge uniformément vers une fonction f sur [a, b] continue par
morceaux.

Théorème 3

Démonstration. Soit ϵ > 0 fixé. Comme (fn)n converge uniformément vers f sur [a, b], il
existe n0 ∈ N tel que

∀n ≥ n0, ∀x ∈ [a, b], |fn(x) − f(x)| <
ϵ

b − a
.

En intégrant les deux membres de cette inégalité sur [a, b], on obtient

∀n ≥ n0,
∫ b

a
|fn(x) − f(x)|dx ≤ ϵ

b − a

∫ b

a
dx = ϵ.

Et on a alors

∀n ≥ n0,

∣∣∣∣∣
∫ b

a
(fn(x) − f(x))dx

∣∣∣∣∣ ≤
∫ b

a
|fn(x) − f(x)|dx ≤ ϵ

ce qui montre que
lim

n→+∞

∫ b

a
(fn(x) − f(x))dx = 0

et donc
lim

n→+∞

∫ b

a
fn(x)dx =

∫ b

a
f(x)dx.
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Considérons pour tout n ∈ N∗,

fn : [0, 1] → R
x 7→ xe

x
n

1. Montrer que (fn)n converge simplement sur [0, 1] vers une fonction f à déterminer.
2. Montrer que (fn)n converge uniformément vers f sur [0, 1].

3. En déduire lim
n→+∞

In où In :=
∫ 1

0
fn(x)dx (sans calculer les In).

Exercice 1

La convergence simple n’est pas suffisante pour intervertir limite et intégrale.
Remarque 2

Pour tout n ≥ 2, soit

fn : [0, 1] → R

x 7→



n2x si 0 ≤ x ≤ 1
n

−n2x + 2n si 1
n

≤ x ≤ 2
n

0 si 2
n

≤ x ≤ 1

1. Montrer que (fn)n≥2 converge simplement vers f = 0 sur [0, 1].

2. Montrer que lim
n

∫ 1

0
fn(x)dx = 1 ̸= 0 =

∫ 1

0
f(x)dx.

3. Que peut-on déduire pour la convergence uniforme de (fn)n≥2 vers f sur [0, 1] ?

Exercice 2

Figure 1.2 – graphe fn, exercice 2
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Théorème de convergence dominée

(Théorème de convergence dominée : admis) Soient I un intervalle de R et (fn)n une
suite de fonctions de I dans K. On suppose que

i) pour tout n ∈ N, la fonction fn est continue par morceaux sur I,
ii) la suite de fonctions (fn)n converge simplement sur I vers une fonction f continue

par morceaux,
iii) il existe une fonction g : I → [0, +∞[ continue par morceaux et intégrable sur I

vérifiant
∀n ∈ N, |fn| ≤ g sur I.

Alors les fonctions fn et f sont (absolument) intégrables sur I et on a

lim
n→+∞

∫
I

fn(x) dx =
∫

I
f(x) dx

i.e.
lim

n→+∞

∫
I

fn(x) dx =
∫

I
lim

n→+∞
fn(x) dx.

On a même lim
n→+∞

∫
I

|fn(x) − f(x)| dx = 0

Théorème 4

On considère pour tout n ≥ 1,

fn : [0, 1] → R

x 7→


−nx + 1 si 0 ≤ x ≤ 1

n

0 si 1
n

≤ x ≤ 1

1. Montrer que (fn)n≥1 converge simplement sur [0, 1] vers

f : [0, 1] −→ R

x 7−→

0 si x ∈]0, 1]
1 si x = 0

mais pas uniformément.

2. Calculer pour tout n ≥ 1,
∫ 1

0
fn(x)dx. Indication : tracer le graphe de fn.

3. En déduire que lim
n

∫ 1

0
fn(x)dx = 0 =

∫ 1

0
f(x)dx.

4. Retrouver le résultat de 3) en utilisant le théorème de convergence dominée.

Exercice 3
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(Intégrale de Wallis). Considérons pour tout n ∈ N, Wn =
∫ π

2

0
sinn(x)dx.

Montrer que lim
n→+∞

Wn = 0.

Exercice 4

Reprenons la suite de fonctions (fn)n définie dans l’Exercice 2. Nous avons montré que
lim

n

∫ 1

0
fn(x)dx ̸=

∫ 1

0
lim

n
fn(x)dx.

Quelle est l’hypothèse du Théorème de convergence dominée qui fait défaut ?

Exercice 5

Convergence uniforme et dérivation

(Suite de fonctions de classe C1) Soient I un intervalle de R et (fn)n une suite de fonctions
de I dans K. On suppose que

i) pour tout n ∈ N, fn est de classe C1 sur I,
ii) il existe a ∈ I tel que la suite numérique (fn(a))n converge,
iii) la suite de fonctions (f ′

n)n converge uniformément sur tout segment de I vers une
fonction g : I → K.

Alors (fn)n converge simplement sur I vers une fonction f de classe C1 sur I vérifiant

f ′ = g sur I i.e.
(

lim
n→+∞

fn

)′
= lim

n→+∞
f ′

n.

De plus, (fn)n converge uniformément vers f sur tout segment de I.

Théorème 5

Notons que si (f ′
n)n converge uniformément vers g sur I alors iii) est vérifiée.

Démonstration. Nous allons commencer par montrer la convergence simple de (fn)n sur I.
Notons f(a) := lim

n→+∞
fn(a).

Soit x ∈ I \ {a}. Supposons que a < x (on fait pareil si a > x). Le Théorème 3 appliqué à
(f ′

n)n sur [a, x] (hypothèses vérifiées) , nous donne

lim
n→+∞

∫ x

a
f ′

n(t)dt =
∫ x

a
g(t)dt ∈ K.

D’autre part, comme

lim
n→+∞

∫ x

a
f ′

n(t)dt = lim
n→+∞

(fn(x) − fn(a)) = lim
n→+∞

fn(x) − f(a),
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on déduit que lim
n→+∞

fn(x) = f(a) +
∫ x

a
g(t)dt pour tout x ∈ I (x = a inclus).

Par suite (fn)n converge simplement sur I vers la fonction f définie par f(x) = f(a) +∫ x

a
g(t)dt pour tout x ∈ I.

Montrons maintenant que f est de classe C1 sur I et que f ′ = g sur I.
Comme g est continue sur I (car ∀n, f ′

n est continue sur I et la suite de fonctions (f ′
n)n CVU

vers g sur tout segment de I, alors d’après Théorème 2, g est continue sur tout segment de I

et donc sur I), on a alors d’après le Théorème fondamental de l’Analyse, G : x 7→
∫ x

a
g(t)dt

est de classe C1 sur I avec ∀x ∈ I, G′(x) = g(x).
Comme f = G + f(a) sur I, on déduit alors que f est de classe C1 sur I avec f ′ = g sur I.

Reste à montrer que (fn)n CVU vers f sur tout segment de I. Soit [α, β] un segment de I.
On a ∀n ∈ N, ∀x ∈ [α, β],

|fn(x) − f(x)| = |fn(x) − fn(α) + fn(α) − f(α) − (f(x) − f(α))|

=
∣∣∣∣fn(α) − f(α) +

∫ x

α
(f ′

n(t) − g(t))dt
∣∣∣∣

≤ |fn(α) − f(α)| +
∣∣∣∣∫ x

α
f ′

n(t) − g(t)dt
∣∣∣∣

≤ |fn(α) − f(α)| + (β − α) sup
t∈[α,β]

|f ′
n(t) − g(t)|.

D’où,

∀n ∈ N, 0 ≤ sup
x∈[α,β]

|fn(x) − f(x)| ≤ |fn(α) − f(α)| + (β − α) sup
t∈[α,β]

|f ′
n(t) − g(t)| →

n→+∞
0

car (f ′
n)n CVU vers g sur [α, β] segment et lim

n
fn(α) = f(α).

Par suite, sup
x∈[α,β]

|fn(x) − f(x)| →
n→+∞

0 et donc la suite de fonctions (fn)n CVU vers f sur

[α, β], pour tout [α, β] segment de I.
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Il en résulte le Corollaire suivant :

Soient I un intervalle de R et (fn)n une suite de fonctions de I dans K. On suppose que
i) pour tout n ∈ N, fn est de classe C1 sur I,
ii) la suite de fonctions (fn)n converge simplement sur I vers une fonction f : I → K,
iii) la suite de fonctions (f ′

n)n converge uniformément sur tout segment de I vers une
fonction g : I → K.

Alors f est de classe C1 sur I avec

f ′ = g sur I i.e.
(

lim
n→+∞

fn

)′
= lim

n→+∞
f ′

n sur I.

De plus, (fn)n converge uniformément vers f sur tout segment de I.

Corollaire 1

En réitérant le Corollaire 1 pour calculer les dérivées d’ordre supérieur, on obtient le théorème
suivant :

(Suite de fonctions de classe Cp) Soient I un intervalle de R, p ∈ N∗, et (fn)n une suite de
fonctions de I dans K. On suppose que

i) pour tout n ∈ N, fn est de classe Cp sur I,
ii) pour tout k = 0, 1, ...p − 1, la suite de fonctions (f (k)

n )n converge simplement sur I
vers une fonction gk,

iii) la suite de fonctions (f (p)
n )n converge uniformément sur tout segment de I vers une

fonction gp.
Alors la limite simple f := g0 de (fn)n sur I est de classe Cp sur I et on a pour tout
k = 0, 1, ..., p,

f (k) = gk sur I i.e.
(

lim
n→+∞

fn

)(k)
= lim

n→+∞
f (k)

n sur I.

De plus, pour tout k = 0, ..., p − 1, la suite de fonctions (f (k)
n )n converge uniformément vers

gk sur tout segment de I.

Théorème 6
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