Chapitre 1

Suites de fonctions

Dans tout ce chapitre, K désigne R ou C. On s'intéresse a la convergence des suites de
fonctions (f,,), ou les fonctions f, sont définies sur un méme domaine non vide D de R ou
C, et a valeurs dans K (f, : D — K). Le module sur C est noté | .|, |a + ib| = Va? + b?
pour tout a,b € R.

1.1 Convergence simple, convergence uniforme d’une suite
de fonctions
Définition 1
Soit (f,)nen une suite d'applications de D dans K et f: D — K.

1. On dit que la suite de fonctions (f,,), converge simplement (CVS) vers f sur A C D
si pour tout x € A, la suite numérique (f,,(z)),, converge vers f(x) cad

Vo€ A, lm_fu(e) = /().
Autrement dit, (f,), CVS vers f sur A si
Ve € A, Ve >0, Ing € N; Vn > ng, |fu(z) — f(z)] <,
ou ngy dépend de € et de z.

La fonction f est alors appelée la limite simple de la suite de fonctions (f,), sur
A et on note f = lim f, sur A.
n
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2. On dit que la suite de fonctions (f,,), converge uniformément (CVU) vers f sur A si
Ve >0, Ing € N; Vn > ng, Vo € A, |fu(z) — f(2)] <,
ou ng ne dépend que de €. Cette propriété est équivalente a :

sup |fn(z) — f(z)] — 0

zEA n—+400
(ce qui suppose que f,, — f est bornée a partir d'un certain rang).

Notons que si (f,), converge uniformément vers f sur A, alors (f,), converge sim-
plement vers f sur A. Attention! Réciproque fausse!

LOExemple :
Soit, pour tout n € N, f,: [0,1

On a
i) (fu)n CVSsur[0,1] vers f: [0,1] — R

{0$xEHLH
r

1sixz=1.

ii) (fn)n ne converge pas uniformément sur [0, 1].
En effet, s'il y avait CVU, ce serait vers f; or, pour tout n, sup |f.(x)— f(z)| =

z€[0,1]
1 = 140,
i) Il ne suffit pas d'écarter 1 : pas de CVU sur [0, 1] puisque pour tout n, 51[1p [ | fu(z) —
z€[0,1
f@l=1 — 1#0.
iv) Pour a €]0,1[, (f,)n converge uniformément vers f (fonction nulle) sur [0, a]. En effet,
pour tout n,

sup |fn(z) — f(z)|=a" — 0.

z€[0,a] =>ree

FIGURE 1.1 — les graphes des f,, n > 1
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v¢ Proposition 1
(Critéere de Cauchy uniforme) Une suite de fonctions (f,), de D dans K converge

uniformément sur A C D si et seulement si elle vérifie le critére de Cauchy uniforme suivant
sur A :

Ve >0, 3N e N;Vp, ¢ > N, Vx € A, |f,(z) — fy(z)] <e.

Démonstration. Supposons que (f,), converge uniformément sur A C D vers une fonction
f:A—=K
Soit € > 0. Il existe alors ng € N tel que pour tout n > ng et pour tout z € A, on a

€
a(e) ~ F@)] < 5
On a alors pour tout p, ¢ > ng et pour tout x € A, on a |f,(z) — f,(x)| < |fpo(z) — f(2)| +

|f(2) = fo(2)| <e

D'ou (f,)n Vérifie le critere de Cauchy uniforme sur A.

Réciproquement, supposons que (f,,), Vérifie le critére de Cauchy uniforme sur A. Montrons
alors que (f,,), converge uniformément sur A.

On va commencer par montrer que (f,,), converge simplement sur A. Soit a € A.

Soit € > 0. Comme (f,,),, Vérifie le critere de Cauchy uniforme sur A,

AN € N; Vp,q > N, Vz € A, |f,(x) — f,(z)| <e. (1.1)

En particulier, on a pour tout p, ¢ > N , |f,(a) — f,(a)] < €. Par suite, (f,(a)), est de
Cauchy dans K donc converge vers [, € K.

On a donc montré que la suite de fonctions (f,,), converge simplement sur A vers la fonction
f:A—Kaquiaze A associe [,.

Montrons maintenant que (f,,), converge uniformément vers f sur A.

Soit € > 0. En passant a la limite quand ¢ — +o00 dans (1.1) (comme (f,,), Vvérifie le critere
de Cauchy uniforme sur A), on obtient

SN €N Vp > N, Vo € A, T [f,(r) — fy(e)| = |fye) — f@)] < e

D'ou (f,)n converge uniformément vers f sur A. ]

Méthodes pratiques :
Plan d'étude standard pour étudier la convergence d'une suite de fonctions (f,), sur A :

1. CVS : fixer x dans A et étudier la convergence de la suite numérique (f,(z)),, ce qui
fournit la fonction limite f sur A le cas échéant (si nécessaire, distinguer différents cas
selon la valeur de x);

2. CVU : Supposons que (f,), CVS vers f sur A.



4 CHAPITRE 1. SUITE DE FONCTIONS

a. Pour montrer la CVU de (f,,),, vers f sur A, il suffit de chercher pour tout n, un ma-
jorant «, (indépendant de x) de {|f..(z)— f(z)|; « € A} tel que la suite numérique
(o) converge vers 0. On a alors la CVU puisque Vn, 0 < sup |f,.(z)—f(2)| < ay.

€A

b. Pour nier la convergence uniforme de (f,,), vers f sur A, il suffit de trouver une
suite (), d'éléments de A telle que la suite numérique (f,(z,) — f(x,))n ne
converge pas vers 0.

En effet, si (f.), CVU vers f sur A, alors pour toute suite (), d'éléments de A,
on a

v, 0 < [fuln) = f(2a)] < sup|fn — f]

et donc (fn(x,) — f(2,))n converge vers O par encadrement.

c. Pour montrer ou pour nier la convergence uniforme de (f,,),, vers f sur A, on peut
éventuellement déterminer la valeur exacte de sup | f,, — f|.
A

d. En I'absence de convergence uniforme sur A , on peut parfois établir la convergence
uniforme sur certaines parties de A (en restreignant le domaine).

1.2 Régularité des limites des suites de fonctions

La convergence simple d'une suite de fonctions ( f,,),, ne permet pas de préserver la régularité
des f, (continuité, dérivabilité, intégrabilité...) au passage a la limite ni d'intervertir deux
limites, ni limite-intégrale, ni limite-dérivée.

La question est donc : sous quelles conditions supplémentaires nous pourrons obtenir ces
résultats ? Nous verrons dans cette partie que la convergence uniforme nous permettra de
conserver ces propriétés.

1.2.1 Interversion des limites

On ne peut pas toujours intervertir les limites! On revient a I'exemple de la suite de fonctions
(fn)n avec pour tout n € N, f,, : [0,1] — R qui a = associe z". La suite (f,), converge
simplement vers la fonction f définie sur [0, 1] par f(z) =0 pour z € [0,1] et f(1) = 1.

On a lim ( lim x”) =0et lim <lim x”) =1.
rz—1— \n—+oo n—+00 \x—1-

WDéfinition 2

Soit A une partie de R (respectivement de C). Un point a € R (respectivement a € C) est

dit adhérent a A si tout intervalle ouvert centré en a (respectivement toute boule ouverte
(disque ouvert) centrée en a) contient au moins un élément de A.

Remarquons qu'un point a € A est adhérent a A.
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v Théoreme 1

(Théoreme de la double limite) Soit (f,,), une suite de fonctions de A dans K. Soit a
un point adhérent 3 A ou a = 400 si A C R n'est pas majoré ou a = —oo si A C R n'est
pas minoré. On suppose que

i) pour tout n, f, admet en a une limite finie [,, € K,
ii) la suite de fonctions (f,,), converge uniformément vers f sur A.

Alors la suite numérique (I,,),, converge dans K vers une limite [ et f admet [ comme limite
en a. Autrement dit, on peut intervertir les limites et on a

lim ( lim fn(a:)) = lim (limfn(x)).

T—a <n—>+oo n—+oo \r—a

Démonstration. Nous allons commencer par montrer la convergence de la suite numérique
(I,)n. Pour cela, nous allons montrer que c'est une suite de Cauchy.

Soit € > 0. Comme (f,), converge uniformément vers f sur A, elle vérifie alors le critére de
Cauchy uniforme sur A : il existe donc un ng € N tel que pour tout p,q € N avec p,q > nyg,
on a pour tout z € A,

|[fo(2) = fo(x)] <.

En faisant tendre © — a, on obtient |l, — [,| < e. On a donc montré que
Ve >0, Ing € N, Vp,q > no, |, — 1, <e.

Autrement dit, (), est une suite de Cauchy de K et donc convergente. Notons [ sa limite.
Il reste a montrer que f(x) — [ quand =z — a.
Soit € > 0. Pour tout x € Aettoutn € N, on a

[f (@) =1 = [f (@) = fal2)+ ful@) =l + 1= 1] < [f(2) = fu() |+ fnlz) =]+l = 1] (1.2)

Comme (f,,)n converge uniformément vers f, il existe n; € N tel que

Vn > ny, Vo € A, |fu(z) — f(2)] < % (1.3)
D’autre part , [, n_>—>+oo [, donc il existe ny, € N tel que
Vi > no, |l — | < % (1.4)
Prenons n = max(ny, ny). Comme lim fn(x) =1, il existe n > 0 tel que
Vo €A, |z —al <n=|fule) =] < <. (1.5)

3
En utilisant (1.3) , (1.4) et (1.5) dans (1.2), on déduit que Vo € A tel que |z —a| <n, on
a|f(x) — ] <e. On adonc montré que

Ve>0,dn > Ve e A, lv—a|<n=|f(z)-1] <e
D'oir lim /() = L. O
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1.2.2 Convergence uniforme et continuité

Le théoréme suivant découle du Théoreme 1.

v Théoréeme 2
Soit (fy)n une suite de fonctions de A dans K telle que :

i) pour tout n € N, f,, est continue sur A,
ii) la suite de fonctions (f,,), converge uniformément vers f sur A.

Alors f est continue sur A.

(§)Remarque 1

En reprenant I'exemple de la suite de fonctions (f,,), avec pour tout n € N, f,, : [0,1] = R
qui a x associe z", on voit que sans la convergence uniforme de la suite de fonctions (f,,),
on peut perdre la continuité de la fonction limite f.

1.2.3 Intégration, dérivation

Dans cette partie, nous allons étudier I'intégration, dérivation des (fonctions) limites de suites
de fonctions, mais cela ne concerne que les fonctions de D C R dans K = R ou C.

ngéfinition 3
1. Soient a,b € R tels que a < b et f : [a,b] — K. On dit que f est continue par
morceaux s'il existe une subdivision (a;)i—o,.., de [a, b] telle que a = ap < a1 < ... <
a; < ... < a, = b avec pour tout i =0, ...,p — 1, la restriction de f a Ja;,a;11][ admet
un prolongement continu sur [a;, @;+1].
2. Soit I un intervallede R et f : I — K. On dit que f est continue par morceaux si elle
I'est sur tout segment de I.
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Convergence uniforme et intégration

vy Théoréme 3

(Interversion de limite-intégrale sur un segment) Soient a,b € R tels que a < b et
(fn)n une suite de fonctions de [a, b] dans K.

On suppose que

i) pour tout n € N, f,, est continue,

ii) la suite de fonctions (f,,), converge uniformément vers une fonction f sur [a, b].

b
Alors la suite numérique </ fn(x)dx> converge et on a
b b
lim / fo(z)de = / f(z)dx

n—-4o00

b b
nll)rfoo/a fn(2) da::/a lim f,(z)dx
Ce résultat reste vraie si on suppose que pour tout n € N, f,, est continue par morceaux
sur [a, b] et que (f,), converge uniformément vers une fonction f sur [a,b] continue par
morceaux.

Démonstration. Soit ¢ > 0 fixé. Comme (f,), converge uniformément vers f sur [a,b], il
existe ng € N tel que

€

VYn > ng, Vo € [a,b], |fu(z) — f(x)]| < —

En intégrant les deux membres de cette inégalité sur [a, b], on obtient

Vn > nyg, /ab|fn(:v)—f(x)|dx§ bja/abdx:e.

Et on a alors

[ nta) = f@de| < [ 17u(0)  F@ldr <

vn > No,

ce qui montre que
b

lim (fu(z) = f(2))dx =0

n—+o00 Jq
et donc
' b b
nl—1>I—Poo/a fn(x)dx:/a f(z)dz.
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:gExercice 1

Considérons pour tout n € N¥,

fo 10,1 - R

1. Montrer que (f,), converge simplement sur [0, 1] vers une fonction f a déterminer.

2. Montrer que (f,), converge uniformément vers f sur [0, 1].

1
3. En déduire Erf I, ou I, := / fn(z)dz (sans calculer les I,,).
n (e.e] 0

(8 Remarque 2

La convergence simple n'est pas suffisante pour intervertir limite et intégrale.

gExercice 2

Pour tout n > 2, soit

fo 10,1 — R
1
n’r si 0<x< =
n
5 o1 2
T —nr+2n si —<zr<—
5 n n
0si —<zx<Ll1

n
1. Montrer que (f,)n>2 converge simplement vers f = 0 sur [0, 1].

1 1
2. Montrer que lim/ falx)dz=1+#0= / f(z)dx.
nJo 0

3. Que peut-on déduire pour la convergence uniforme de (f,,),>2 vers f sur [0,1]7?

FIGURE 1.2 — graphe f,,, exercice 2
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Théoréme de convergence dominée

¢y Théoreme 4
(Théoreme de convergence dominée : admis) Soient I un intervalle de R et (f,), une
suite de fonctions de I dans K. On suppose que

i) pour tout n € N, la fonction f,, est continue par morceaux sur I,

ii) la suite de fonctions (f,), converge simplement sur I vers une fonction f continue
par morceaux,

i) il existe une fonction g : I — [0,4o00| continue par morceaux et intégrable sur [
vérifiant
VneN, |f.<g surl.

Alors les fonctions f,, et f sont (absolument) intégrables sur I et on a

n—-+00

lim /Ifn(x) d:r;:/lf(:r;) dx

i.e.
nl_l)I_{loo/Ifn<$) dx = Inl—lgloo ful(z) de.
On a méme nl—lgloo/l |fu(z) — f(z)|dx =0

gExercice 3

On considére pour tout n > 1,

fo 0,1 — R
1
—nr+1si 0<g<—

S

x — 1
0si —<zx<l1
n

1. Montrer que (f,),>1 converge simplement sur [0, 1] vers

f: [0,1]] — R
{0 si z €]0, 1]
r +——

1siz=0

mais pas uniformément.

1
2. Calculer pour tout n > 1, / fn(z)dz. Indication : tracer le graphe de f,,.
0

1 1
3. En déduire que lim/ fo(x)dr =0= / f(z)dx.
n Jo 0

4. Retrouver le résultat de 3) en utilisant le théoréme de convergence dominée.
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jExercice 4

(Intégrale de Wallis). Considérons pour tout n € N, W,, = /5 sin”(x)dx.
0

Montrer que lim W, = 0.
n—4o00

4 Exercice 5

Reprenons la suite de fonctions (f,,), définie dans I'Exercice 2. Nous avons montré que
1 1

lim / Falz)dz # / lim f, (z)dz.

Quelle est I'hypothése du Théoréme de convergence dominée qui fait défaut?

Convergence uniforme et dérivation

v Théoréeme 5

(Suite de fonctions de classe C'') Soient I un intervalle de R et (f,), une suite de fonctions
de I dans K. On suppose que

i) pour tout n € N, f,, est de classe C! sur 1,
i) il existe a € I tel que la suite numérique (f,(a)), converge,

i) la suite de fonctions (f/), converge uniformément sur tout segment de I vers une
fonction g : I — K.

Alors (f,)n converge simplement sur I vers une fonction f de classe C* sur I vérifiant

/
fl=g sur I ie. ( lim fn> = lim f/.

n—-+40o n—-+40o

De plus, (f,). converge uniformément vers f sur tout segment de /.

Notons que si (), converge uniformément vers g sur [ alors iii) est vérifiée.

Démonstration. Nous allons commencer par montrer la convergence simple de (f,), sur I.
Notons f(a) := 1_131 fn(a).

Soit x € I\ {a}. Supposons que a < x (on fait pareil si a > ). Le Théoréeme 3 appliqué a
(f1)n sur [a, z] (hypothéses vérifiées) , nous donne

lim /x £ (b)dt = /jg(t)dt e K.

n—-+00

D’autre part, comme

lim [*fi0dt = Tim (fu(2) = fala) = lim_fu(@) ~ f(a)

n—+oo n—+oo n—+o00



1.2. REGULARITE DES LIMITES DES SUITES DE FONCTIONS 11

on déduit que hm fulz) = f(a) +/ g(t)dt pour tout x € I (x = a inclus).
Par suite (fn)n converge simplement sur I vers la fonction f définie par f(z) = f(a) +
g(t)dt pour tout x € I.

a

Montrons maintenant que f est de classe C' sur I et que f' = g sur I.
Comme g est continue sur [ (car Vn, f est continue sur [ et la suite de fonctions (f;,), CVU
vers g sur tout segment de [, alors d'apres Théoréme 2, g est continue sur tout segment de [

et donc sur I), on a alors d’apres le Théoreme fondamental de I'Analyse, G : z — / t)dt

est de classe C! sur I avec Vo € I, G'(x) = g().
Comme f = G + f(a) sur I, on déduit alors que f est de classe C" sur I avec f' = g sur I.

Reste a montrer que (f,), CVU vers f sur tout segment de I. Soit [a, §] un segment de I.
OnaVne N, Vz € [o, 5],

ala) = F@)] = o) = ful) + fule) = f@) = (F(2) = F())
= |ful@) = 1)+ [ (11t0) - g(t»dt\
< Ifule) = f0)| + )t
< Ifue) = f(@)] + (ﬁ—a) sup [(t) = g(0).

te(a, ]

D’ou,

VneN, 0< sup |fu(z) = f(2)] < [fule) = fla)|+ (B —a) sup |f(t) —g(t)] — 0

w€fa ] t€fof] e
car (f))n CVU vers g sur [a, 5] segment et lim () = f(a).
Par suite, sup |f.(z) — f(x)] = 0 et donc la suite de fonctions (f,,), CVU vers f sur

z€[a,B]

[a, B], pour tout [«, 3] segment de . O
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Il en résulte le Corollaire suivant :

v¢ Corollaire 1

Soient I un intervalle de R et (f,), une suite de fonctions de I dans K. On suppose que
i) pour tout n € N, f,, est de classe O sur 1,
ii) la suite de fonctions (f,,), converge simplement sur I vers une fonction f : [ — K,

i) la suite de fonctions (f)), converge uniformément sur tout segment de I vers une
fonction g : I — K.

Alors f est de classe C* sur I avec

n—-4o00

/
fl=gsur I ie. ( lim fn> = 1_1)15{1 fl sur I.

De plus, (f,). converge uniformément vers f sur tout segment de I.

En réitérant le Corollaire 1 pour calculer les dérivées d'ordre supérieur, on obtient le théoreme
suivant :

7y Théoreme 6
(Suite de fonctions de classe C*) Soient I un intervalle de R, p € N*, et (f,),, une suite de
fonctions de I dans K. On suppose que

i) pour tout n € N, f,, est de classe C? sur I,

i) pour tout k = 0,1,...p — 1, la suite de fonctions (f¥), converge simplement sur I
vers une fonction g,

iii) la suite de fonctions (f%)),, converge uniformément sur tout segment de I vers une

fonction g,,.
Alors la limite simple f := go de (f,)n sur I est de classe C? sur I et on a pour tout
k=0,1,..,p,
) = sur [ ie lim f " = lim f® sur I
9k n n——+o0o " n—s—+oo ° " ’

De plus, pour tout £ =0, ...,p— 1, la suite de fonctions (fT(Lk))n converge uniformément vers
gk sur tout segment de /.
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