Proposition 2.13 (Image réciproque d’'un ouvert/fermé par une application continue). Soit
f:R" — RP une application continue, alors si Q < RP est un ouvert (resp. F est un fermé), f~1(Q)

est un ouvert (resp. fermé) de R".

Démonstration. Montrons-le pour F fermé. Alors on a
FUF) ={xeR": f(x) € F}.

Soit (xi)r < f~1(F) qui tend vers x. Alors pour tout k € N, on a f(x;) € F. Comme f est continue,
f(xr) — f(x) et comme F est fermé, la suite (f(xx))x, quiici converge, a sa limite dans F. On en
déduit que f(x) € F et donc que x € f~!(F) et ainsi finalement que f~!(F) est un fermé de R".
Soit Q un ouvert de R?, alors comme

R™ 1) = FHRP\Q),

le fait que R”\Q soit fermé comme complémentaire d'un ouvert prouve que R”\ f~1(Q) est un
fermé d’apres le point précédent, et donc que f~1(Q) est un ouvert de R". O
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2.2 Points intérieurs/adhérents

Définition 2.14 (Voisinage). On dit que V c R" est un voisinage d’'un point x € R" s'il exister >0
telque B(x,r)c V.

Exemples 2.15. [0,2], ] —3,3[ et ]1/2,3/2] sont des voisinages de x = 1 car, par exemple, ils
contiennent tous les trois I'intervalle ouvert ]3/4,5/4[ qui contient lui-méme x = 1.

Définition 2.16 (Point intérieur a une partie de R"). Soit A c R". On dit que le point x est
intérieur a A si A est un voisinage de x, c’est-a-dire sir >0, B(x,r) c A.
Lintérieur de A, noté A, est l'ensemble des points intérieurs a A.

Remarque 2.17. Un point y est dit extérieur a A s’il est intérieur a son complémentaire. L'exté-

rieur de A est donc R\ A # R"\ A (pensez 2 A comme étant une boule ouverte).

Exemple 2.18. Le point 1 est intérieur a 10,2[ et a [0, 3].

Proposition 2.19 (Ouvert et intérieur). Soit A< R". Alors A est un ouvert de R" si et seulement
siA=A.

Démonstration. Evident par définition (cf. aussi TD). O

Définition 2.20 (Point adhérent a une partie de R"). Soit A cR". Un point x est adhérent a A si
chaque voisinage de x rencontre A, c'est-a-dire que pour tout voisinage V dex, onaVNA# @.
Lensemble des points adhérents a A, aussi appelé adhérence de A, est noté A.

Proposition 2.21 (Propriétés de 'adhérence d'un ensemble). Soit A c R". Alors x € R" est adhé-

rent a A si et seulement s'il existe une suite (xi) . < A telle que klim Xp = X.
—+00

Démonstration. (Preuve expliquée brievement en CM, car le résultat est évident si on a bien
compris la définition de point adhérent). Supposons que (xx)x < A converge vers x et montrons
que x est adhérent a A. Soit V un voisinage de x. Alors il existe r > 0 tel que B(x,r) < V. Or,
par convergence de (xi) vers x, il existe N € N tel que pour tout k = N, xj € B(x,r) et ainsi
VN A# @, ce quiveut dire que x est un point adhérent a A.

Supposons maintenant que x est adhérent a A. Alors pour tout voisinage V de x, VN A # @, ce
qui est vrai en particulier pour V = B(x,r) pour tout r > 0. Soit (¢;)x < R} une suite qui tend
vers 0. Alors Vk € N, 3xi € B(x,ex) N A# @¢. On a donc construit une suite (x;)x < A qui converge
vers x puisque pour tout k€N, || x — xi|l2 < € — 0. O

Exemple 2.22. Dans R?, le point (0,0) est adhérent a A =]0, +o00[x]0, +ool.
En effet, on peut construire la suite (xy) < A définie pour tout k = 1 par x; = (1/k, 1/k) qui tend
vers (0,0) quand k — +oo.

Proposition 2.23 (Fermé et adhérence). Soir AcR". Alors A est un fermé deR" si et seulement
siA=A.

Démonstration. Evident par définition (cf. aussi TD). O

Définition 2.24 (Densité). Soient Ac B cR", alors on dit que A est dense dans B si B = A.
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Exemple 2.25. On sait que Q = R\Q = R, c’est-a-dire que 'ensemble des rationnels et I'en-
semble des irrationnels sont denses dans R. Tout réel est donc limite d’une suite de rationnels
et d'une suite d’irrationnels.

Pour A c R", définissons la distancede x e R" a A:

d(x,A) = inf | x — all».
acA

Alors on a le résultat suivant.

Proposition 2.26 (Adhérence et distance). Soit x € R" et A c R", alors x € A si et seulement si
d(x,A) =0.

Démonstration. On a, pour tout x € R”,
X€A < (X)) ken C A, klim X=X
—+
— I(xKkenC A, klim lx—xkll2=0

—+

— inf|lx—al>=0
acA

<~ d(x,A)=0.
O
Proposition 2.27 (Adhérence et intérieur de B(x,r)). Soitx € R" etr >0, alors :
1. B(x,r) = B(x, 1) (l'adhérence d’une boule est la boule fermée);
2. F(;, r) = B(x,r) (U'intérieur d’'une boule est la boule ouverte).
Démonstration. Admise (vous pouvez essayer de le démontrer). O

Définition 2.28 (Bord/frontiére d’un ensemble). Soit A < R", alors on définit par dA = A\A le
bord (ou la frontiere) de A.

En particulier, A= ALOA et le triplet (;1, 0A, [RZ”\Z) forme une partition de R".

Remarque 2.29. VxeR"”, Vr >0, 0B(x,r) = S(x, r) puisque B(x,r) = E(x, ryetB(x,r) =B(x,r).

2.3 Compacts de R"

Définition 2.30 (Compact de R"). On dit que l'ensemble non-vide K c R" est compact si toute
suite d’'éléments de K admet une sous-suite convergente dans K.

Remarque 2.31. Une autre définition équivalente sera donnée en L3 en termes de recouvre-
ment de K par des ouverts.

Théoreéme 2.32 (Heine-Borel). Un ensemble K c R" est compact si et seulement si K est fermé et
borné dansR".

Remarque 2.33. Attention : Ce résultat n’est valable qu’en dimension finie!
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Démonstration. Supposons que K est fermé et borné. Montrons que K est compact. Soit (xx)
une suite d’éléments de K. Comme K est borné, par le théoreme de Bolzano-Weierstrass, (Xi) ¢
admet une sous-suite (x,x))x qui converge vers x. Comme K est fermé, il est clair que x € K, et
donc K est compact.

Réciproquement, supposons que K est compact et montrons que K est fermé et borné. Raison-
nons par 'absurde.

* Si K n'est pas fermé, Alors K¢ n’est pas ouvert et ainsi, en posant une suite (¢;), < R} tendant
vers 0, on a que pour tout k € N, on peut trouver xi € B(x,&r) N K # @. La suite (xi)x < K ainsi
construite tend vers x ¢ K, car ||x — xill2 < €¢ — 0, ainsi que toute ses sous-suites, ce qui est
impossible car K et compact. Ainsi K est fermé.

* Si K n’est pas borné, alors il existe une suite (x)r < K telle que || xkll2 = k pour tout k. Ainsi
toute sous-suite de (xi) serait aussi non-bornée et donc divergente, ce qui est une contradic-
tion avec le fait que K est compact. O

Exemple 2.34 (Boules fermées). Toute boule fermée B(x, r) est compacte dans R”.

Pour aller plus loin : Le Théoreme de Riesz nous apprend que les boules fermées sont com-
pactes si et seulement I’espace que I'on considere est de dimension finie. En dimension infinie,
la notion de compacité existe mais les boules fermées ne sont pas compactes! On pourra se
référer a cette page pour en savoir plus.

Proposition 2.35 (Intersection et union de compacts). Tout intersection quelconque (resp.
union finie) de compacts de R" est un compact de R".

Démonstration. Soit {K;};c; une famille quelconque de compacts de R”, ce sont donc des fermés-
bornés d’apres le théoreme de Heine-Borel. Lensemble K =(;c; K; est donc :

e fermé comme intersection quelconque de fermés.
e borné car, étant donné i € I, K c K; et comme K; est borné, K I'’est aussi.

De plus, si {Kj, ..., Kj,} est une famille finie de compacts, alors I’ensemble K "= Ule K; est:
e fermé comme union finie de fermés.

* borné. En effet, pour touti € I = {1, ..., p}, K; est borné donc il existe M; > 0 tel que pour
tout x € Kj, | x]l2 < M;. Comme I est un ensemble fini, M := max;c; M; > 0 existe. Ainsi,
soit x € K’, alors il existe i € I tel que x € K; et donc | x| < M; < M, ce qui prouve que K’
est borné.

O

Proposition 2.36 (Produit de compacts). Soit K; < R" et K, < RP deux compacts. Alors Ky x K
est un compact deR"™ x RP.

Démonstration. K; x K, est un fermé comme produit de fermés. De plus, il est clair que c’est
aussi une partie bornée de R” x RP. Il s’agit donc d’'un compact. O

Exemple 2.37. Le cube K = [0, 1]” est un compact de R".
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