
Proposition 2.13 (Image réciproque d’un ouvert/fermé par une application continue). Soit
f :Rn →Rp une application continue, alors siω↑Rp est un ouvert (resp. F est un fermé), f ↓1(ω)
est un ouvert (resp. fermé) de Rn.

Démonstration. Montrons-le pour F fermé. Alors on a

f ↓1(F ) = {x ↔Rn : f (x) ↔ F }.

Soit (xk )k ↑ f ↓1(F ) qui tend vers x. Alors pour tout k ↔N, on a f (xk ) ↔ F . Comme f est continue,
f (xk ) → f (x) et comme F est fermé, la suite ( f (xk ))k , qui ici converge, a sa limite dans F . On en
déduit que f (x) ↔ F et donc que x ↔ f ↓1(F ) et ainsi finalement que f ↓1(F ) est un fermé de Rn .
Soitω un ouvert de Rp , alors comme

Rn\ f ↓1(ω) = f ↓1(Rp \ω),

le fait que Rp \ω soit fermé comme complémentaire d’un ouvert prouve que Rn\ f ↓1(ω) est un
fermé d’après le point précédent, et donc que f ↓1(ω) est un ouvert de Rn .
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2.2 Points intérieurs/adhérents

Définition 2.14 (Voisinage). On dit que V ↑Rn est un voisinage d’un point x ↔Rn s’il existe r > 0
tel que B(x,r ) ↑V .

Exemples 2.15. [0,2], ] ↓ 3,3[ et ]1/2,3/2] sont des voisinages de x = 1 car, par exemple, ils
contiennent tous les trois l’intervalle ouvert ]3/4,5/4[ qui contient lui-même x = 1.

Définition 2.16 (Point intérieur à une partie de Rn). Soit A ↑ Rn. On dit que le point x est
intérieur à A si A est un voisinage de x, c’est-à-dire si ↗r > 0, B(x,r ) ↑ A.
L’intérieur de A, noté Å, est l’ensemble des points intérieurs à A.

Remarque 2.17. Un point y est dit extérieur à A s’il est intérieur à son complémentaire. L’exté-

rieur de A est donc !̊Rn\A ↘=Rn\Å (pensez à A comme étant une boule ouverte).

Exemple 2.18. Le point 1 est intérieur à ]0,2[ et à [0,3].

Proposition 2.19 (Ouvert et intérieur). Soit A ↑ Rn. Alors A est un ouvert de Rn si et seulement
si Å = A.

Démonstration. Evident par définition (cf. aussi TD).

Définition 2.20 (Point adhérent à une partie deRn). Soit A ↑Rn. Un point x est adhérent à A si
chaque voisinage de x rencontre A, c’est-à-dire que pour tout voisinage V de x, on a V ≃ A ↘=⇐.
L’ensemble des points adhérents à A, aussi appelé adhérence de A, est noté A.

Proposition 2.21 (Propriétés de l’adhérence d’un ensemble). Soit A ↑Rn. Alors x ↔Rn est adhé-
rent à A si et seulement s’il existe une suite (xk )k ↑ A telle que lim

k→+⇒
xk = x.

Démonstration. (Preuve expliquée brièvement en CM, car le résultat est évident si on a bien
compris la définition de point adhérent). Supposons que (xk )k ↑ A converge vers x et montrons
que x est adhérent à A. Soit V un voisinage de x. Alors il existe r > 0 tel que B(x,r ) ↑ V . Or,
par convergence de (xk )k vers x, il existe N ↔ N tel que pour tout k ⇑ N , xk ↔ B(x,r ) et ainsi
V ≃ A ↘=⇐, ce qui veut dire que x est un point adhérent à A.
Supposons maintenant que x est adhérent à A. Alors pour tout voisinage V de x, V ≃ A ↘=⇐, ce
qui est vrai en particulier pour V = B(x,r ) pour tout r > 0. Soit (ωk )k ↑ R⇓

+ une suite qui tend
vers 0. Alors ⇔k ↔N, ↗xk ↔ B(x,ωk )≃A ↘=⇐. On a donc construit une suite (xk )k ↑ A qui converge
vers x puisque pour tout k ↔N, ↖x ↓xk↖2 < ωk → 0.

Exemple 2.22. Dans R2, le point (0,0) est adhérent à A =]0,+⇒[↙]0,+⇒[.
En effet, on peut construire la suite (xk )k ↑ A définie pour tout k ⇑ 1 par xk = (1/k,1/k) qui tend
vers (0,0) quand k →+⇒.

Proposition 2.23 (Fermé et adhérence). Soit A ↑ Rn. Alors A est un fermé de Rn si et seulement
si A = A.

Démonstration. Evident par définition (cf. aussi TD).

Définition 2.24 (Densité). Soient A ↑ B ↑Rn, alors on dit que A est dense dans B si B = A.
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Exemple 2.25. On sait que Q = R\Q = R, c’est-à-dire que l’ensemble des rationnels et l’en-
semble des irrationnels sont denses dans R. Tout réel est donc limite d’une suite de rationnels
et d’une suite d’irrationnels.

Pour A ↑Rn , définissons la distance de x ↔Rn à A :

d(x, A) = inf
a↔A

↖x ↓a↖2.

Alors on a le résultat suivant.

Proposition 2.26 (Adhérence et distance).! Soit x ↔ Rn et A ↑ Rn, alors x ↔ A si et seulement si
d(x, A) = 0.

Démonstration. On a, pour tout x ↔Rn ,

x ↔ A ∝′ ↗(xk )k↔N ↑ A, lim
k→+⇒

xk = x

∝′ ↗(xk )k↔N ↑ A, lim
k→+⇒

↖x ↓xk↖2 = 0

∝′ inf
a↔A

↖x ↓a↖2 = 0

∝′ d(x, A) = 0.

Proposition 2.27 (Adhérence et intérieur de B (x , r )). Soit x ↔Rn et r > 0, alors :

1. B(x,r ) = B(x,r ) (l’adhérence d’une boule est la boule fermée) ;

2. "̊B(x,r ) = B(x,r ) (l’intérieur d’une boule est la boule ouverte).

Démonstration. Admise (vous pouvez essayer de le démontrer).

Définition 2.28 (Bord/frontière d’un ensemble). Soit A ↑ Rn, alors on définit par εA = A\Å le
bord (ou la frontière) de A.

En particulier, A = Å∞εA et le triplet
(

Å,εA,Rn\A
)

forme une partition de Rn.

Remarque 2.29. ⇔x ↔Rn , ⇔r > 0, εB(x,r ) = S(x,r ) puisque B(x,r ) = B(x,r ) et "̊B(x,r ) = B(x,r ).

2.3 Compacts de Rn

Définition 2.30 (Compact de Rn). On dit que l’ensemble non-vide K ↑ Rn est compact si toute
suite d’éléments de K admet une sous-suite convergente dans K .

Remarque 2.31. Une autre définition équivalente sera donnée en L3 en termes de recouvre-
ment de K par des ouverts.

Théorème 2.32 (Heine-Borel). Un ensemble K ↑Rn est compact si et seulement si K est fermé et
borné dans Rn.

Remarque 2.33. Attention : Ce résultat n’est valable qu’en dimension finie !
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Démonstration. Supposons que K est fermé et borné. Montrons que K est compact. Soit (xk )k

une suite d’éléments de K . Comme K est borné, par le théorème de Bolzano-Weierstrass, (xk )k

admet une sous-suite (xϑ(k))k qui converge vers x. Comme K est fermé, il est clair que x ↔ K , et
donc K est compact.
Réciproquement, supposons que K est compact et montrons que K est fermé et borné. Raison-
nons par l’absurde.
• Si K n’est pas fermé, Alors K c n’est pas ouvert et ainsi, en posant une suite (ωk )k ↑R⇓

+ tendant
vers 0, on a que pour tout k ↔N, on peut trouver xk ↔ B(x,ωk )≃K ↘=⇐. La suite (xk )k ↑ K ainsi
construite tend vers x ↘↔ K , car ↖x ↓ xk↖2 < ωk → 0, ainsi que toute ses sous-suites, ce qui est
impossible car K et compact. Ainsi K est fermé.
• Si K n’est pas borné, alors il existe une suite (xk )k ↑ K telle que ↖xk↖2 ⇑ k pour tout k. Ainsi
toute sous-suite de (xk )k serait aussi non-bornée et donc divergente, ce qui est une contradic-
tion avec le fait que K est compact.

Exemple 2.34 (Boules fermées). Toute boule fermée B(x,r ) est compacte dans Rn .
Pour aller plus loin : Le Théorème de Riesz nous apprend que les boules fermées sont com-
pactes si et seulement l’espace que l’on considère est de dimension finie. En dimension infinie,
la notion de compacité existe mais les boules fermées ne sont pas compactes ! On pourra se
référer à cette page pour en savoir plus.

Proposition 2.35 (Intersection et union de compacts).! Tout intersection quelconque (resp.
union finie) de compacts de Rn est un compact de Rn.

Démonstration. Soit {Ki }i↔I une famille quelconque de compacts deRn , ce sont donc des fermés-
bornés d’après le théorème de Heine-Borel. L’ensemble K =⋂

i↔I Ki est donc :

• fermé comme intersection quelconque de fermés.

• borné car, étant donné i ↔ I , K ↑ Ki et comme Ki est borné, K l’est aussi.

De plus, si {K1, ...,Kp } est une famille finie de compacts, alors l’ensemble K ∈ =⋃p
i=1 Ki est :

• fermé comme union finie de fermés.

• borné. En effet, pour tout i ↔ I = {1, ..., p}, Ki est borné donc il existe Mi > 0 tel que pour
tout x ↔ Ki , ↖x↖2 ∋ Mi . Comme I est un ensemble fini, M := maxi↔I Mi > 0 existe. Ainsi,
soit x ↔ K ∈, alors il existe i ↔ I tel que x ↔ Ki et donc ↖x↖ ∋ Mi ∋ M , ce qui prouve que K ∈

est borné.

Proposition 2.36 (Produit de compacts). Soit K1 ↑ Rn et K2 ↑ Rp deux compacts. Alors K1 ↙K2

est un compact de Rn ↙Rp .

Démonstration. K1 ↙K2 est un fermé comme produit de fermés. De plus, il est clair que c’est
aussi une partie bornée de Rn ↙Rp . Il s’agit donc d’un compact.

Exemple 2.37. Le cube K = [0,1]n est un compact de Rn .
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