1 Appréhender les distances : les normes sur R"
On rappelle que, pour n € N*, 'espace R” est défini par
R™:={(x1,..., x5) : Xx € R pour tout 1 < k < n}.

Il forme un espace vectoriel pour I’addition et la multiplication par un scalaire définies respec-
tivement par

1. addition: x+y = (x1,..., Xp) + (Y1, ¥Yn) = (X1 + V1,0 X + V),

2. multiplication par un scalaire : si A € R, alors Ax = A(x1, ..., X5) = (Ax1,..., Axp).

Définition 1.1 (Norme sur R"). Une norme surR" est une application
1R —R, x— x|
vérifiant les quatre propriétés suivantes :
1. Positivité : Pour tout x € R", || x|| = 0;
2. Séparation : Pour tout x e R", | x| =0 < x=0;
3. Homogénéité : Pour tout A € R et pour tout x € R", Ax = |Alll x| ;

4. Inégalité triangulaire : Pour tout (x,y) € R” xR", [ x+ yll < llx|l + |yl

On dit alors que (R", || - ||) est un espace vectoriel normé.

Exemple 1.2 (Valeur absolue). Dans R, la valeur absolue |- | est une norme.

Exercice. Montrer que || - || est une norme sur R si et seulement s’il existe a > 0 tel que | - || = a| - |.
Correction. Soit a > 0, alors il est facile de montrer que x — «|x| est bien une norme sur R. Ré-
ciproquement, soit || - | une norme sur R, alors on a, pour tout x € R, || x|l = |1 x x|l = |x||1]| par
homogénéité. En posant a = ||1|| > 0 (puisque 1 #0), on a bien | - || = al-|.

Remarque 1.3 (Maximum des normes). Soient |||’ et ||-||” deux normes sur R”, alors |- || : R” —
R, définie par

!/ 1
VxeR", [x|:=max(lxl, Ix]")

est une norme sur R”.

Définition 1.4 (Distance sur R” issue d’'une norme). Soit|-|| une norme surR", alors la distance
surR"™ associée a cette norme est Uapplication d : R" x R" — R, définie par

dx,y)=lx-yl.

Remarque 1.5. La notion générale de distance d : R” x R” — R est basée sur celle de la norme
dans le sens ot elle doit vérifier :

1. Positivité : V(x,y) e R" xR", d(x,y) = 0;

2. Symétrie: V(x,y) eR" xR", d(x,y) =d(y, x);



3. Séparation: V(x,y) eR" xR, d(x,y) =0 < x=y;
4. Inégalité triangulaire : V(x, y,z) e R" x R" xR", d(x,z) < d(x,y) + d(y, 2).

Etant donnée cette définition, une distance peut ne pas étre issue d'une norme sur R”.

A partir de I'inégalité triangulaire, on peut montrer le résultat suivant.

Proposition 1.6 (Deuxiéme inégalité triangulaire). Soit | - || une norme surR". Alors, pour tout
(x,y) eR"xR", ona
[lxl = lIyl] < llx =yl

Démonstration. Soient (x,y) € R” x R", alors on remarque que

lxll=llx=y+yl=lx=yl+Ilyl
Iyll=lly—x+xl<lly—-xl+lxl=lx-yl+Ilxl,

ol on a utilisé I'inégalité triangulaire dans chaque cas et la symétrie ||u| = || — u|l pour tout
u € R" (homogénéité pour A = —1) dans le deuxieme cas. Ainsi on a montré que

Ixl =Nyl =lx=yll, et lyl=lxl=Ilx=yl
ce qui revient a dire que |||x|| - ||y||| <lx-yl. O

Remarque 1.7. Généralement, on synthétise les deux inégalités triangulaires de la facon sui-
vante : V(x,y) e R" xR",
[l =1yl < lx+yl < lxl + 1yl

Proposition 1.8 (Inégalité de Cauchy-Schwarz). Pour tout x = (xi,...,x,) € R" et tout y =
(Y1, yn) ER", ona

1

2

<(£4) ()

De plus, on a égalité si et seulement si x = 1y pour un certain A € R, c’est-a-dire que les vecteurs x
et y sont liés.

n
Y XYk
k=1

Démonstration. (Preuve vue en TD) O

Remarque 1.9 (Produit scalaire). Une autre facon d’écrire cette inégalité est la suivante : I'es-

n 2
pace R” peut étre muni de la norme euclidienne (cf. proposition suivante) || x|, := (Z xi) et
k=1

n
du produit scalaire associé (x, y) := Z X Vk.- Onremarque que {x, x) = || xllg. Ainsi, I'inégalité de
k=1
Cauchy-Schwarz s’écrit aussi

Y(x, ) eR" xR",  [(x, )| < lIxl2lyl2.



Remarque 1.10 (Pour aller plus loin : Inégalité de Holder). L'inégalité de Cauchy-Schwarz est
un cas particulier d'une inégalité plus générale appelée inégalité de Holder : pour tous réels p
etgtelsquel < p,g<+ooet % + % =1, alors, pour tout x = (x1,...,X,) € R" et y = (1, ..., yn) € R",
on a (la premiere inégalité est évident, c’est la seconde qui est celle de Holder)

IESNEDMERTE (Z |xk|p) (Z |xk|q) .

k=1 k=1 k=1

Proposition 1.11 (Normes classiques). Les applications || - |1, || - l2 et || - oo définie pour tout
x € R" par

1
n n ) 2
Ixl:= ) lxkl, lxlz:=|) xz| et lxlloo:= max x|
k=1 =1 1<k=n

sont des normes surR".

Remarque 1.12 (Pour aller plus loin : p-normes). On peut montrer que, pour tout réel p =1,
la p-norme || - || , : R” — R définie par

n P
vx:(xl)“-)x}’Z)ERn) ”x”p:(z |xk|p)
k=1

est une norme sur R”. Lunique difficulté réside a montrer I'inégalité triangulaire, appelée in-
égalité de Minkowski.

Démonstration. Vérifions un-a-un les axiomes d’'une norme dans chacun des cas.
Norme | - ||;. Il s’agit d’'une simple conséquence du fait que la valeur absolue | - | est une norme
sur R. En effet, on a:

1. Positivité. Soit x = (x, ..., X,;) € R", alors | x;| = 0 pour tout k € {1, ..., n}, ce qui implique que
llxlly =0.

2. Séparation. Soit x = (x, ..., X,,) € R". Si x = 0, alors il est clair que || x|| = ZZZI |0] =0.
Réciproquement, si | x||; = 0, alors on a ZZ=1 |xx| = 0. Une somme de termes positifs est
nulle si et seulement si tous ses termes sont nuls, ce qui implique que |xi| = 0 pour tout
ke€{1,...,n}. On en déduit donc que x; = 0 pour tout k € {1,..., n}, c’est-a-dire que x = 0.

3. Homogénéité. Soit 1 € R et x € R", alors, en utilisant 'homogénéité de la valeur absolue,

n n n
IAxly =) 1Axkl = D IMlxel = 1AL Y Lkl = ALl
k=1 k=1 k=1

4. Inégalité triangulaire. Soient (x, y) € R” x R", alors
n n

n n
lx+ylh= Y I+ yel < Y Qxel + 1y = Y 1xd + Y 1yel = Il + 1yl
k=1 k=1 k=1 k=1

Norme | - ||o0. On a



1. Positivité. Soit x = (x1,..., xx) € R” tel que [ X[loo = Maxj<g<p Xk = |xj| pour un certain
J€1l,..., n}. Alors il est clair que || x|l = [xj] = 0.

2. Séparation. Si x =0, alors il est clair que || X|loo = Max;<g<p | Xkl =0
Réciproquement, soit x = (xy, ..., xx) € R" tel que || x|lco = maxX;<r<y, |Xx| = 0. Alors cela im-
plique que | x| = 0 pour tout k € {1, ..., n} et donc que x = 0.

3. Homogénéité. Soit 1 € R et x = (x1, ..., Xg) € R". Alors, on a

Axlloo = max |Axk| = max |Al|xg| = Al max |[xg| = [Alll X[l co-
<k< 1<k<n 1<k<n

4. Inégalité triangulaire. Soient (x, y) € R” x R", alors, pour un certain j € {1,..., 1},

X+ ylloo = max |xg+ yrl=|xj+ y;jl <lxjl+1yjl < max |xg|+ max [yil = [[Xlloo + |V llco-
1<k<n 1<k<n 1<k<n

Norme | -|2.On a

1
1. Positivité. Pour tout x = (x1,..., X,) € R", il est clair que || x[l2 = (X}_, xi] 2 >0.

1
2. Séparation. Si x =0, alorson a | x| = (X}_, 0%)% =0.

1
Réciproquement, soit x = (x1,..., X,) € R” tel que || x> = (X}_, xi)2 = 0. Alors on a néces-
sairement Y.}, xi = 0 et toute somme nulle de termes positifs est composée de termes
nuls, c’est-a-dire que pour tout k € {1, ..., n}, xi =0,i.e. xp =0, etainsi x =0.

3. Homogénéité. Soit 1 € R et x = (x, ..., x,) € R". Alors on a

quz:(z(mk)z) =(Zﬂtzxi) =(Azzxi) =VA2(in) = [l xll2.
k=1 k=1 k=1 k=1

4. Inégalité triangulaire. Soient (x, y) € R” x R", alors

n n n n
Ix+yl3 = Z(xk+yk = Z (xi+yi+2xkyk) =) xi+ > yi+22 XYk
k=1 k=1 k=1 k=1 k=1

Par I'inégalité de Cauchy-Schwarz, on sait que 22221 Xk Vi < 2|l xll21l yll2 et ainsi

lx + ylI5 < x5+ Iyl5 + 20 xl2llyllz = (]2 + IIyIIz) .
En prenant la racine carrée de 'expression précédente, on trouve ||x + yll2 < llxll2 + | yll2.
]

N Exercice. Soit a = (ay,...,a,) € R" et N, : R" — R définie par
n
X= (X100 Xn) ER”, Ng(x) =) ailxgl.

Montrer que N, est une norme si et seulement si a € ([R{j) n
Correction. Supposons que « € (R})". Il est alors facile de montrer, avec les mémes arguments
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que pour la norme || - |1, que Ny, est une norme.
Réciproquement, si N, est une norme, alors, en notant {ey, ..., e,} la base canonique deR", alors,
puisqueVie€{l,..,n}, e; #(0,...,0), on obtient

Vie{l,..,n}, N()=a;>0

etdonca e (R})".

Définition 1.13 (Normes équivalentes). Soient||-| et| .| deux normes surR". On dit que | - || et
|- " sont équivalentes s'il existe m, M > 0 tels que pour tout x € R",

!
ml x|l < llx|" = Ml x|l

Remarque 1.14. Il s’agit bien d’une relation d’équivalence : binaire, réflexive, symétrique et
transitive (Exercice).

’ Théoreme 1.15 (Equivalence des normes sur R"”). Toutes les normes sur R" sont équivalentes.

Démonstration. Cf. chapitre sur la continuité (on a besoin de la compacité et de la continuité
pour prouver ce résultat). O

Définition 1.16 (Boules pour une norme donnée). Soit | - | une norme sur R", d sa distance
associée, x e R" et r > 0. Alors on définit :

* la boule ouverte centrée en x et de rayon r pour la norme|| - | par

Bx,r):={yeR":|x—yll<r}={yeR":d(x,y) <r}

* la boule fermée centrée en x et de rayon r pour la norme || - || par

B(x,r):={yeR":lx-yl<r}={yeR":d(x,y) <}

* la sphére centrée en x et de rayon r pour la norme || - || par

0B(x,1) = S(x,r):= B(x,)\B(x,r) ={yeR": |x-yl =r} ={yeR":d(x,y) = r}

Remarque 1.17 (Notations). Si plusieurs normes sont définies, il peut y avoir confusion et on
pourra noter By.(x, 1), By (x, 1) et 0By (x,1).

Exemple 1.18 (Sur R). En dimension n = 1 pour la valeur absolue, B(x,r) =]x—r,x+r|, B(x,r) =

(x—nrx+rletSx,r)={x—-rx+r} et]a,b[=3(%b»%)-

Exemple 1.19 (Sur R? et R?). Donnons trois exemples de boules ouvertes :

By, ((1,-3,0),2) = {(x,,2) e R®: (x — 1)* + (y + 3)* + 2° < 4}
By, (2,-1),1) = {(x, ) eR?: |x = 2| + |y + 1| < 1}
By, ((0,-5),3) = {(x, y) € R* : max(|x], |y +5]) < 9}.



Exemple 1.20 (Représentation des boules dans le plan). En dimension n = 2, représentons les
boules unités (x = 0 et r = 1) fermées pour les normes classiques, c’est-a-dire :

B, 0, ={yeR*: |yl <1} =1{y= (1,12 €R®: [y1] +1y2] < 1}
B, 0D ={yeR*: |yl ={y=(n,)2) eR*: ¥y +y5 <1}
Bl (0,1) = {y €R: [lylloo < 1} = {y = (y1,y2) € R* :max(y1],1y2]) < 1}

11 suffit de tracer leurs bords sur le cadran R, x R, et de compléter par symétrie.

FIGURE 1: Vert: 8B.;,(0,1); Bleu: 8By, (0,1); Rouge : B (0, 1).

Définition 1.21 (Ensemble borné). Soit |- | une norme surR", on dit que A c R" est borné (pour
la norme || - ||) s'il existe M > 0 tel que pour tout x € A, ||x|| < M. Autrement dit, A est borné s'il
existe M > 0 tel que A < By (0, M).

Remarque 1.22 (Normes équivalentes et ensemble borné). Dans la pratique, on choisira la
norme qui nous arrange puisque toutes les normes sur R” sont équivalentes. En particulier,
montrer que, pour tout x = (xy, ..., X,) € A, pour tout i € {1, ..., n}, il existe M; > 0 tel que |x;| = M;
suffit pour conclure que A est borné dans R”.

Définition 1.23 (Convergence d’une suite pour une norme donnée). Soit || - | une norme sur
R". On dit que la suite (xi) < R" tend vers x € R" pour la norme || - || si

Ve>0, ANeN, Vk=N, |xx—x|<e.

On écrit aussi : klim Xk = X pour lanorme || - |.
—+00

Remarque 1.24. Quelques remarques sur cette notion de convergence :
e Attention : une suite pourrait converger pour une certaine norme et pas pour une autre! Sur
R", ce ne sera pas le cas, et cela grace a I'équivalence des normes.



* On peut réécrire cette définition en utilisant la notion de boule ouverte associée a la norme
|-l de la facon suivante:

Ve>0, IANeN, VkEN, xkEB”.”(x,s).

On peut aussi dire : “quelque soit le voisinage (cf. chapitre suivant, mais une boule ouverte suffit)
de x — aussi petit que l'on veut au sens de lUinclusion —, il existe un rang a partir duquel tous les
termes de la suite sont dans ce voisinage."

Proposition 1.25 (Convergence des coordonnées d’une suite). La suite (x) = (x,lc, ...,x,’C‘)k c

R™ converge vers x = (x',...,x™) pour || - |2 si et seulement si (x}c)k converge vers x' pour tout
i€fl,..,n} pour|-|.

Remarque 1.26. On peut choisir n'importe quelle autre norme que | - ||» dans la proposition
précédente, car toutes les normes sont équivalentes.




