
1 Appréhender les distances : les normes sur Rn

On rappelle que, pour n →N↑, l’espace Rn est défini par

Rn :=
{
(x1, ..., xn) : xk →R pour tout 1 ↓ k ↓ n

}
.

Il forme un espace vectoriel pour l’addition et la multiplication par un scalaire définies respec-
tivement par

1. addition : x + y = (x1, ..., xn)+ (y1, ..., yn) = (x1 + y1, ..., xn + yn),

2. multiplication par un scalaire : si ω →R, alors ωx =ω(x1, ..., xn) = (ωx1, ...,ωxn).

Définition 1.1 (Norme sur Rn). Une norme sur Rn est une application

↔ ·↔ :Rn ↗R, x ↘↗ ↔x↔

vérifiant les quatre propriétés suivantes :

1. Positivité : Pour tout x →Rn, ↔x↔ ≃ 0 ;

2. Séparation : Pour tout x →Rn, ↔x↔= 0 ⇐⇒ x = 0 ;

3. Homogénéité : Pour tout ω →R et pour tout x →Rn, ωx = |ω|↔x↔ ;

4. Inégalité triangulaire : Pour tout (x, y) →Rn ⇑Rn, ↔x + y↔ ↓ ↔x↔+↔y↔.

On dit alors que (Rn ,↔ ·↔) est un espace vectoriel normé.

Exemple 1.2 (Valeur absolue). Dans R, la valeur absolue | · | est une norme.

✁ Exercice. Montrer que ↔ ·↔ est une norme sur R si et seulement s’il existe ε> 0 tel que ↔ ·↔=ε| · |.
Correction. Soit ε > 0, alors il est facile de montrer que x ↘↗ ε|x| est bien une norme sur R. Ré-
ciproquement, soit ↔ · ↔ une norme sur R, alors on a, pour tout x → R, ↔x↔ = ↔1⇑ x↔ = |x|↔1↔ par
homogénéité. En posant ε= ↔1↔> 0 (puisque 1 ⇓= 0), on a bien ↔ ·↔=ε| · |.

Remarque 1.3 (Maximum des normes).✁ Soient ↔·↔⇔ et ↔·↔⇔⇔ deux normes surRn , alors ↔·↔ :Rn ↗
R+ définie par

↖x →Rn , ↔x↔ := max(↔x↔⇔,↔x↔⇔⇔)

est une norme sur Rn .

Définition 1.4 (Distance surRn issue d’une norme). Soit ↔·↔ une norme surRn, alors la distance
sur Rn associée à cette norme est l’application d :Rn ⇑Rn ↗R+ définie par

d(x, y) := ↔x ↙ y↔.

Remarque 1.5. La notion générale de distance d : Rn ⇑Rn ↗ R est basée sur celle de la norme
dans le sens où elle doit vérifier :

1. Positivité : ↖(x, y) →Rn ⇑Rn , d(x, y) ≃ 0 ;

2. Symétrie : ↖(x, y) →Rn ⇑Rn , d(x, y) = d(y, x) ;
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3. Séparation : ↖(x, y) →Rn ⇑Rn , d(x, y) = 0 ⇐⇒ x = y ;

4. Inégalité triangulaire : ↖(x, y, z) →Rn ⇑Rn ⇑Rn , d(x, z) ↓ d(x, y)+d(y, z).

Etant donnée cette définition, une distance peut ne pas être issue d’une norme sur Rn .

A partir de l’inégalité triangulaire, on peut montrer le résultat suivant.

Proposition 1.6 (Deuxième inégalité triangulaire).! Soit ↔ ·↔ une norme sur Rn. Alors, pour tout
(x, y) →Rn ⇑Rn, on a ∣∣↔x↔↙↔y↔

∣∣↓ ↔x ↙ y↔

Démonstration. Soient (x, y) →Rn ⇑Rn , alors on remarque que

↔x↔= ↔x ↙ y + y↔ ↓ ↔x ↙ y↔+↔y↔
↔y↔= ↔y ↙x +x↔ ↓ ↔y ↙x↔+↔x↔= ↔x ↙ y↔+↔x↔,

où on a utilisé l’inégalité triangulaire dans chaque cas et la symétrie ↔u↔ = ↔↙u↔ pour tout
u →Rn (homogénéité pour ω=↙1) dans le deuxième cas. Ainsi on a montré que

↔x↔↙↔y↔ ↓ ↔x ↙ y↔, et ↔y↔↙↔x↔ ↓ ↔x ↙ y↔,

ce qui revient à dire que
∣∣↔x↔↙↔y↔

∣∣↓ ↔x ↙ y↔.

Remarque 1.7. Généralement, on synthétise les deux inégalités triangulaires de la façon sui-
vante : ↖(x, y) →Rn ⇑Rn , ∣∣↔x↔↙↔y↔

∣∣↓ ↔x + y↔ ↓ ↔x↔+↔y↔.

Proposition 1.8 (Inégalité de Cauchy-Schwarz). Pour tout x = (x1, ..., xn) → Rn et tout y =
(y1, ...yn) →Rn, on a ∣∣∣∣∣

n∑

k=1
xk yk

∣∣∣∣∣↓
(

n∑

k=1
x2

k

) 1
2
(

n∑

k=1
y2

k

) 1
2

De plus, on a égalité si et seulement si x =ωy pour un certain ω →R, c’est-à-dire que les vecteurs x
et y sont liés.

Démonstration. (Preuve vue en TD)

Remarque 1.9 (Produit scalaire). Une autre façon d’écrire cette inégalité est la suivante : l’es-

pace Rn peut être muni de la norme euclidienne (cf. proposition suivante) ↔x↔2 :=
(

n∑

k=1
x2

k

) 1
2

et

du produit scalaire associé ∝x, y′ :=
n∑

k=1
xk yk . On remarque que ∝x, x′= ↔x↔2

2. Ainsi, l’inégalité de

Cauchy-Schwarz s’écrit aussi

↖(x, y) →Rn ⇑Rn ,
∣∣∝x, y′

∣∣↓ ↔x↔2↔y↔2.
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Remarque 1.10 (Pour aller plus loin : Inégalité de Hölder). L’inégalité de Cauchy-Schwarz est
un cas particulier d’une inégalité plus générale appelée inégalité de Hölder : pour tous réels p
et q tels que 1 ↓ p, q ↓+∞ et 1

p + 1
q = 1, alors, pour tout x = (x1, ..., xn) →Rn et y = (y1, ..., yn) →Rn ,

on a (la première inégalité est évident, c’est la seconde qui est celle de Hölder)

∣∣∝x, y′
∣∣↓

n∑

k=1
|xk yk |↓

(
n∑

k=1
|xk |p

) 1
p
(

n∑

k=1
|xk |q

) 1
q

.

Proposition 1.11 (Normes classiques). Les applications ↔ · ↔1, ↔ · ↔2 et ↔ · ↔∞ définie pour tout
x →Rn par

↔x↔1 :=
n∑

k=1
|xk |, ↔x↔2 :=

(
n∑

k=1
x2

k

) 1
2

et ↔x↔∞ := max
1↓k↓n

|xk |

sont des normes sur Rn.

Remarque 1.12 (Pour aller plus loin : p-normes). On peut montrer que, pour tout réel p ≃ 1,
la p-norme ↔ ·↔p :Rn ↗R définie par

↖x = (x1, ..., xn) →Rn , ↔x↔p =
(

n∑

k=1
|xk |p

) 1
p

est une norme sur Rn . L’unique difficulté réside à montrer l’inégalité triangulaire, appelée in-
égalité de Minkowski.

Démonstration. Vérifions un-à-un les axiomes d’une norme dans chacun des cas.
Norme ↔ ·↔1. Il s’agit d’une simple conséquence du fait que la valeur absolue | · | est une norme
sur R. En effet, on a :

1. Positivité. Soit x = (x1, ..., xn) →Rn , alors |xk |≃ 0 pour tout k → {1, ...,n}, ce qui implique que
↔x↔1 ≃ 0.

2. Séparation. Soit x = (x1, ..., xn) →Rn . Si x = 0, alors il est clair que ↔x↔=∑n
k=1 |0| = 0.

Réciproquement, si ↔x↔1 = 0, alors on a
∑n

k=1 |xk | = 0. Une somme de termes positifs est
nulle si et seulement si tous ses termes sont nuls, ce qui implique que |xk | = 0 pour tout
k → {1, ...,n}. On en déduit donc que xk = 0 pour tout k → {1, ...,n}, c’est-à-dire que x = 0.

3. Homogénéité. Soit ω →R et x →Rn , alors, en utilisant l’homogénéité de la valeur absolue,

↔ωx↔1 =
n∑

k=1
|ωxk | =

n∑

k=1
|ω||xk | = |ω|

n∑

k=1
|xk | = |ω|↔x↔1.

4. Inégalité triangulaire. Soient (x, y) →Rn ⇑Rn , alors

↔x + y↔1 =
n∑

k=1
|xk + yk |↓

n∑

k=1
(|xk |+ |yk |) =

n∑

k=1
|xk |+

n∑

k=1
|yk | = ↔x↔1 +↔y↔1.

Norme ↔ ·↔∞. On a
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1. Positivité. Soit x = (x1, ..., xk ) → Rn tel que ↔x↔∞ = max1↓k↓n |xk | = |x j | pour un certain
j → {1, ...,n}. Alors il est clair que ↔x↔∞ = |x j |≃ 0.

2. Séparation. Si x = 0, alors il est clair que ↔x↔∞ = max1↓k↓n |xk | = 0.
Réciproquement, soit x = (x1, ..., xk ) →Rn tel que ↔x↔∞ = max1↓k↓n |xk | = 0. Alors cela im-
plique que |xk | = 0 pour tout k → {1, ...,n} et donc que x = 0.

3. Homogénéité. Soit ω →R et x = (x1, ..., xk ) →Rn . Alors, on a

↔ωx↔∞ = max
1↓k↓n

|ωxk | = max
1↓k↓n

|ω||xk | = |ω| max
1↓k↓n

|xk | = |ω|↔x↔∞.

4. Inégalité triangulaire. Soient (x, y) →Rn ⇑Rn , alors, pour un certain j → {1, ...,n},

↔x + y↔∞ = max
1↓k↓n

|xk + yk | = |x j + y j |↓ |x j |+ |y j |↓ max
1↓k↓n

|xk |+ max
1↓k↓n

|yk | = ↔x↔∞+↔y↔∞.

Norme ↔ ·↔2. On a

1. Positivité. Pour tout x = (x1, ..., xn) →Rn , il est clair que ↔x↔2 =
(∑n

k=1 x2
k

) 1
2 ≃ 0.

2. Séparation. Si x = 0, alors on a ↔x↔=
(∑n

k=1 02) 1
2 = 0.

Réciproquement, soit x = (x1, ..., xn) → Rn tel que ↔x↔2 =
(∑n

k=1 x2
k

) 1
2 = 0. Alors on a néces-

sairement
∑n

k=1 x2
k = 0 et toute somme nulle de termes positifs est composée de termes

nuls, c’est-à-dire que pour tout k → {1, ...,n}, x2
k = 0, i.e. xk = 0, et ainsi x = 0.

3. Homogénéité. Soit ω →R et x = (x1, ..., xn) →Rn . Alors on a

↔ωx↔2 =
(

n∑

k=1
(ωxk )2

) 1
2

=
(

n∑

k=1
ω2x2

k

) 1
2

=
(
ω2

n∑

k=1
x2

k

) 1
2

=
√
ω2

(
n∑

k=1
x2

k

) 1
2

= ↔ω|↔x↔2.

4. Inégalité triangulaire. Soient (x, y) →Rn ⇑Rn , alors

↔x + y↔2
2 =

n∑

k=1
(xk + yk )2 =

n∑

k=1

(
x2

k + y2
k +2xk yk

)
=

n∑

k=1
x2

k +
n∑

k=1
y2

k +2
n∑

k=1
xk yk .

Par l’inégalité de Cauchy-Schwarz, on sait que 2
∑n

k=1 xk yk ↓ 2↔x↔2↔y↔2 et ainsi

↔x + y↔2
2 ↓ ↔x↔2

2 +↔y↔2
2 +2↔x↔2↔y↔2 =

(
↔x↔2 +↔y↔2

)2 .

En prenant la racine carrée de l’expression précédente, on trouve ↔x + y↔2 ↓ ↔x↔2 +↔y↔2.

✁ Exercice. Soit ε= (ε1, ...,εn) →Rn et Nε :Rn ↗R définie par

↖x = (x1, ..., xn) →Rn , Nε(x) =
n∑

i=1
εi |xi |.

Montrer que Nε est une norme si et seulement si ε → (R↑
+)n.

Correction. Supposons que ε → (R↑
+)n. Il est alors facile de montrer, avec les mêmes arguments
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que pour la norme ↔ ·↔1, que Nε est une norme.
Réciproquement, si Nε est une norme, alors, en notant {e1, ...,en} la base canonique de Rn, alors,
puisque ↖i → {1, ...,n}, ei ⇓= (0, ...,0), on obtient

↖i → {1, ...,n}, N (ei ) =εi > 0

et donc ε → (R↑
+)n.

Définition 1.13 (Normes équivalentes). Soient ↔ ·↔ et ↔ ·↔⇔ deux normes sur Rn. On dit que ↔ ·↔ et
↔ ·↔⇔ sont équivalentes s’il existe m, M > 0 tels que pour tout x →Rn,

m↔x↔ ↓ ↔x↔⇔ ↓ M↔x↔.

Remarque 1.14.✁ Il s’agit bien d’une relation d’équivalence : binaire, réflexive, symétrique et
transitive (Exercice).

Théorème 1.15 (Equivalence des normes sur Rn). Toutes les normes sur Rn sont équivalentes.

Démonstration. Cf. chapitre sur la continuité (on a besoin de la compacité et de la continuité
pour prouver ce résultat).

Définition 1.16 (Boules pour une norme donnée). Soit ↔ · ↔ une norme sur Rn, d sa distance
associée, x →Rn et r > 0. Alors on définit :

• la boule ouverte centrée en x et de rayon r pour la norme ↔ ·↔ par

B(x,r ) :=
{

y →Rn : ↔x ↙ y↔< r
}
=

{
y →Rn : d(x, y) < r

}

• la boule fermée centrée en x et de rayon r pour la norme ↔ ·↔ par

B(x,r ) :=
{

y →Rn : ↔x ↙ y↔ ↓ r
}
=

{
y →Rn : d(x, y) ↓ r

}

• la sphère centrée en x et de rayon r pour la norme ↔ ·↔ par

ϑB(x,r ) = S(x,r ) := B(x,r )\B(x,r ) =
{

y →Rn : ↔x ↙ y↔= r
}
=

{
y →Rn : d(x, y) = r

}

Remarque 1.17 (Notations). Si plusieurs normes sont définies, il peut y avoir confusion et on
pourra noter B↔·↔(x,r ), B↔·↔(x,r ) et ϑB↔·↔(x,r ).

Exemple 1.18 (SurR). En dimension n = 1 pour la valeur absolue, B(x,r ) =]x↙r, x+r [, B(x,r ) =
[x ↙ r, x + r ] et S(x,r ) = {x ↙ r, x + r } et ]a,b[= B

(
a+b

2 , b↙a
2

)
.

Exemple 1.19 (Sur R2 et R3). Donnons trois exemples de boules ouvertes :

B↔·↔2 ((1,↙3,0),2) = {(x, y, z) →R3 : (x ↙1)2 + (y +3)2 + z2 < 4}

B↔·↔1 ((2,↙1),1) = {(x, y) →R2 : |x ↙2|+ |y +1| < 1}

B↔·↔∞((0,↙5),3) = {(x, y) →R2 : max(|x|, |y +5|) < 9}.
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Exemple 1.20 (Représentation des boules dans le plan). En dimension n = 2, représentons les
boules unités (x = 0 et r = 1) fermées pour les normes classiques, c’est-à-dire :

B↔·↔1 (0,1) = {y →R2 : ↔y↔1 ↓ 1} = {y = (y1, y2) →R2 : |y1|+ |y2|↓ 1}

B↔·↔2 (0,1) = {y →R2 : ↔y↔2 ↓ 1} = {y = (y1, y2) →R2 : y2
1 + y2

2 ↓ 1}

B↔·↔∞(0,1) = {y →R2 : ↔y↔∞ ↓ 1} = {y = (y1, y2) →R2 : max(|y1|, |y2|) ↓ 1}.

Il suffit de tracer leurs bords sur le cadran R+⇑R+ et de compléter par symétrie.

FIGURE 1 : Vert : ϑB↔·↔1 (0,1) ; Bleu : ϑB↔·↔2 (0,1) ; Rouge : ϑB↔·↔∞(0,1).

Définition 1.21 (Ensemble borné). Soit ↔·↔ une norme sur Rn, on dit que A ∈Rn est borné (pour
la norme ↔ · ↔) s’il existe M > 0 tel que pour tout x → A, ↔x↔ ↓ M. Autrement dit, A est borné s’il
existe M > 0 tel que A ∈ B↔·↔(0, M).

Remarque 1.22 (Normes équivalentes et ensemble borné). Dans la pratique, on choisira la
norme qui nous arrange puisque toutes les normes sur Rn sont équivalentes. En particulier,
montrer que, pour tout x = (x1, ..., xn) → A, pour tout i → {1, ...,n}, il existe Mi > 0 tel que |xi |↓ Mi

suffit pour conclure que A est borné dans Rn .

Définition 1.23 (Convergence d’une suite pour une norme donnée). Soit ↔ · ↔ une norme sur
Rn. On dit que la suite (xk )k ∈Rn tend vers x →Rn pour la norme ↔ ·↔ si

↖ϖ> 0, ∋N →N, ↖k ≃ N , ↔xk ↙x↔< ϖ.

On écrit aussi : lim
k↗+∞

xk = x pour la norme ↔ ·↔.

Remarque 1.24. Quelques remarques sur cette notion de convergence :
• Attention : une suite pourrait converger pour une certaine norme et pas pour une autre ! Sur
Rn , ce ne sera pas le cas, et cela grâce à l’équivalence des normes.
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• On peut réécrire cette définition en utilisant la notion de boule ouverte associée à la norme
↔ ·↔ de la façon suivante :

↖ϖ> 0, ∋N →N, ↖k ≃ N , xk → B↔·↔(x,ϖ).

On peut aussi dire : “quelque soit le voisinage (cf. chapitre suivant, mais une boule ouverte suffit)
de x – aussi petit que l’on veut au sens de l’inclusion –, il existe un rang à partir duquel tous les
termes de la suite sont dans ce voisinage."

Proposition 1.25 (Convergence des coordonnées d’une suite).! La suite (xk )k = (x1
k , ..., xn

k )k ∈
Rn converge vers x = (x1, ..., xn) pour ↔ · ↔2 si et seulement si (xi

k )k converge vers xi pour tout
i → {1, ...,n} pour | · |.

Remarque 1.26. On peut choisir n’importe quelle autre norme que ↔ · ↔2 dans la proposition
précédente, car toutes les normes sont équivalentes.
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