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1.7 Produit scalaire hermitien

a)

Soit E un C—espace vectoriel.

Définitions.
On dit que lapplication F x E — C, (x,y) — {(x,y) est une forme sesquili-
néaire si

(i) Yze E, E— C, y — {(x,y) est linéaire;

(ii) "ye E, E — C, v+ {(z,y) est antilinéaire ;

on dit que c’est une forme sesquilinéaire hermitienne si de plus
(iti) "2,y € E, (x,y) = {y, 1) ;
on dit que c¢’est un produit scalaire hermitien si de plus
(iv) "we B, {x,r) > 0.

Ezxemples.
(z,y) — >, Tiy; est une forme hermitienne sur C”.
(f,g) — Sil fg est une forme hermitienne sur C[X].
Ezercices.

Notons (x,y) = a(z,y) +if(x,y) avec a(x,y), f(z,y) € R pour tous x,y € E.

Vérifier que (-, -) est une forme sesquilinéaire hermitienne < « est bilinéaire

symétrique réelle, 3 est bilinéaire antisymétrique réelle et Yz, y € E, a(x,iy) =

—B(z,y)..

Soit A € A, (CT). Vérifier que #,,1(C) x M,1(C) — C, (X,Y) — 'XAY est
A.

une forme sesquilinéaire hermitienne < *A =

II Espaces euclidiens

Définitions.

— Un espace préhilbertien est un couple (F,{-,-)) ou E est un R—espace vec-
toriel et (-, ) un produit scalaire sur E.

— Un espace euclidien est un couple (E, (-, -)) ou E est un R—espace vectoriel
de dimension finie et (-,-) un produit scalaire sur E.

Ezxemple. R™ avec le produit scalaire usuel.

t. c-a-d Vx,2' € B, (x + a',y) = (w,y) + {(2',y), "w € E, "t € C, {ta,y) = Kz, y).
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II.1 Bases orthogonales
Soit (E,{-,-)) un espace euclidien.
Définitions.
a) On dit que z,y € E sont orthogonauz si {x,y) = 0.
b) Une base orthogonale de E est une base (e, ..., €,) telle que ¥i # j, {e;,e;)» = 0.
¢) Une base orthonormale ou orthonormée de E est une base (eq, ..., €,) telle que
Vi # g, leiejy =0, Vi, {ei, e,y = 1.
Théoréme. Si E est un espace euclidien, alors E admet une base orthogonale.

En particulier £ admet une base orthonormale.
Ezxercices.

1) (Théoreme de Pythagore) Soient z,y € E. Montrer que (z,y) = 0 < ||z+y||*> =
[zl + [[y]]*.
2) Soit (ey, ..., €,) une famille de vecteurs non nuls de F telle que Vi # j, {e;, ;) =

0. Vérifier que les e; sont linéairement indépendants.

3) Trouver une base orthonormale pour E = {(x,y,2) e R® : z+y+ 2 = 0} avec

le produit scalaire usuel.

I1.2 Procédé de Gram-Schmidt

Théoréme. Soit F un espace euclidien de base (e, ..., €,). Il existe une unique
base (f1, ..., fn) de E telle que

(i) "1<i<n, fice;+ Vect{ey, ...,e;_1};

(ii) la base (f1,..., fn) est orthogonale.

Remarque. En particulier, la base (ﬁ, o f—”) est orthonormale.

[ nll
Nous allons démontrer le théoréme plus général suivant.

Théoréme. Soit (ey,...,e,) une base d'un R—espace vectoriel E. Soit ¢ :

E x E — R une forme bilinéaire symétrique telle que
vl <k < n, dét(go(ei, ej))lgi,jgk # 0.

T Alors il existe une unique base (fi, ..., fn) de E telle que :

i) "1<k<n, fypeep+ Vect{er,...,ex_1}.

t. Cette condition est vérifiée si ¢ est un produit scalaire. En effet dans ce cas, pour tout
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i) VL<k#l<n, o(fifi)) = 0.

De plus, pour tout 1 < k < n, dét(p(e;, e;))1<ij<k = ©(f1, f1)--o(fi, fr)-
Démo. On pose pour tout 1 < k < n, Ay = ((e;, €;))1<ij<k € Mi(R).
Unicité.

Si (f1,s fn) €t (f1, .., f7) sont deux bases de E telles que

T<k#L<n, o(fi. i) = o(fi. f]) =0

1<k <n, fi, fl €ep+ Vectie, ..., ep_1},
Alors "1 < k < n, Vect{fi, ..., fe} = Vect{ey, ...,er} = Vect{f], ..., fi.}. De plus,

sil< k< n,alors

fr — f1. € Vect{ey, ..., ex_1} = Vect{f1, ..., fe} = Vect{fi, ..., f1.}.

Donc

fo=FR+ D il

1<j<k—1

pour certains réels ¢;. Mais alors

N<i<k—1 0l f)=e(f+ Do tifif)

1<j<k—1

= olfi )+ D, tielfi 1)
1<j<k—1
= tip(fi, i)

car j # i = @(fj, fi) = 0.

1 < k < n, la matrice Ay = (¢(e;, €j))1<i,j<k est de noyau nul car si

x1 ko k
0#x= ( : )e]Rk = lgApr = Z inxjga(ei,ej)

Tk i=1j=1

k k
= Z Z p(ziei, zje5)
i=1j=1

k k
= @(Z T4, Z zje;) = p(z,2) >0
i=1 j=1
ol z := Zi;l xz;e; 7 0. Donc détA;, # 0.
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Or, d’apreés la derniére phrase de 1’énoncé (voir ci-dessous pour la justification),
o(fi, fi) # 0 donc t; = 0. D’ou f], = f.

Existence.

On définit par récurrence la base (f1, ..., fn). On pose fi; = ey. Alors o(f1, f1) =
p(er,e1) = détA; # 0. On suppose que k = 1 et que fi, ..., fr sont déja définis avec
les propriétés suivantes :

— 1< z;é<k: o(fi, f;) = 0.

— "1 <i<k, fiee + Vect{er,...,e;_1}.

Supposons k < m. On remarque que la matrice de passage P, de la base
(é1,...,ex) dans la base (f1,..., fr) est triangulaire supérieure avec des 1 sur la
diagonale. '

Donc dét P, = 1. Or, d’aprés la formule de changement de bases pour les formes
bilinéaires, on a

(e(fis fi)r<ij<k = "PuArPe € Mi(R)

et en appliquant le déterminant
dét(p(fi, fi)1<ij<k = dét(* Py,)dét Axdét Py
= détA, # 0.
Or la matrice (o(f3, fj))1<ij<k est diagonale donc
dét(e(fi, fi))i<ij<k = @(f1, f1) . p(fr, fr) = dét Ay, # 0.

En particulier "1 < i < k, ¢(f;, f;) # 0. On peut donc poser

fret1 = €pe1 — Z Ld e(’;:rl}];l) fi € epq1 + VeCt{fh ey fk}

C k41 + Vect{el, ey €k}.
De phlS, "1 gj < k7 90<fk+17fj> = 0.
En effet,

vl < ] (fk+17fj - €k+1 _Z L4 el;jl}fl fhf])

. En effet, les coefficients Py;; de la matrice Py, vérifient f; = Zle Py;je;. Comme les vecteurs
e1, ..., en forment une base et comme f; € ¢; + Vect{ey, ...,ej,l}7 onaj, Ppj; =1, Vi >4, P =
0.
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k
90 k+17fz f@,f])

€k+1,fg & fz;fl
= p(ers1, fj) — W@(fm fi)
= 0.

Cela termine la construction de la famille (f1, ..., f,) par récurrence.

FExercices.
a) Siej,...,e,) est une base orthonormale de F, alors Yo =xie1 + ...+ Tnen, Y =
yre1 + ... + ynen € B, (x,y) = 1191 + ... + TpYn.

b) Appliquer le procédé de Gram-Schmidt a la base (e, e1, e, €3, e4) = (1, X, X2, X3, X?)
de R[X]<4 avec le produit scalaire (f, g) = Sil %dt = 5 f(cos ) g(cos x)dux.

fo=eo =1 fi = er— GfRfo = X = Bl = X, fo = e = RS
o= X2 §§; s X B = X o= e R = RS-
bl fy — x° - Horsll i (0 1) - Gy - Bt _ xo -

X, f4:e4—§§1§iif Gl b G =Gt fo = XM (X0
1X) - B (e ) - Mty Bt XX 4

c) | Critere de Sylvester. Soit A € .7, (R). Montrer que la forme bilinéaire symétrique
associée p4 est un produit scalaire < "1 < i < n, Aj(A) = dét(Aup)i<as<i > 0.
Indication. Soit A; = (Aap)i<a,p<i- Noter b = (eq,...,e,) la base canonique de

R™. Appliquer le procédé de Gram-Schmidt aux vecteurs ey, ...,e, et obtenir
une base ' = (f1,..., fn) orthogonale pour ¢ a. Alors D; = "Pi[@a](e,,. e s 0%
P; est la matrice de passage de la base (eq, ..., e;) dans la base (f1, ..., f;) qui est
triangulaire supérieure avec des 1 sur la diagonale et D; est la matrice de @4
dans la base (fi, ..., i) qui est diagonale car la base (fi, ..., f;) est orthogonale.
Donc "i, a(fr, f1)--palfi, fi) = détD; = Ay(A) ...

Si tous les A;(A) > 0, alors la forme bilinéaire @4 est définie positive (dans
la base (f1,..., fn), C’est facile). Si pa est définie positive, alors pour tout i,
Ai(A) = palfr, fr)-e(fis fi) > 0.

2-10 0
Ezemple. La matrice symétrique A = _01 _21 _21 _01 définit un produit sca-
0 0 —-12

laire car Aj(A) =2, Ag(A) =3, Az(A) =4, Ay(A) =5 > 0.
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Fin du cours du 30/1
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