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I.7 Produit scalaire hermitien

Soit E un �´espace vectoriel.
Définitions.

a) On dit que l’application E ˆ E Ñ �, px, yq ÞÑ xx, yy est une forme sesquili-
néaire si

(i) @x P E, E Ñ �, y ÞÑ xx, yy est linéaire ;

(ii) @y P E, E Ñ �, x ÞÑ xx, yy est antilinéaire † ;

b) on dit que c’est une forme sesquilinéaire hermitienne si de plus

piiiq @x, y P E, xx, yy “ xy, xy ;

c) on dit que c’est un produit scalaire hermitien si de plus

pivq @x P E, xx, xy ą 0 .

Exemples.

a) px, yq ÞÑ řn
i“1 xiyi est une forme hermitienne sur �n.

b) pf, gq ÞÑ ş1
´1

fg est une forme hermitienne sur �rXs.
Exercices.

1) Notons xx, yy “ αpx, yq ` iβpx, yq avec αpx, yq, βpx, yq P � pour tous x, y P E.
Vérifier que x¨, ¨y est une forme sesquilinéaire hermitienne ô α est bilinéaire
symétrique réelle, β est bilinéaire antisymétrique réelle et @x, y P E, αpx, iyq “
´βpx, yq..

2) Soit A P Mnp�q. Vérifier que Mn1p�q ˆ Mn1p�q Ñ �, pX, Y q ÞÑ tXAY est
une forme sesquilinéaire hermitienne ô tA “ A.

II Espaces euclidiens

Définitions.
— Un espace préhilbertien est un couple pE, x¨, ¨yq où E est un �´espace vec-

toriel et x¨, ¨y un produit scalaire sur E.
— Un espace euclidien est un couple pE, x¨, ¨yq où E est un �´espace vectoriel

de dimension finie et x¨, ¨y un produit scalaire sur E.
Exemple. �n avec le produit scalaire usuel.

†. c-à-d @x, x1 P E, xx ` x1, yy “ xx, yy ` xx1, yy, @x P E, @t P �, xtx, yy “ txx, yy.
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II.1 Bases orthogonales

Soit pE, x¨, ¨yq un espace euclidien.
Définitions.

a) On dit que x, y P E sont orthogonaux si xx, yy “ 0.

b) Une base orthogonale de E est une base pe1, ..., enq telle que @i ‰ j, xei, ejy “ 0.

c) Une base orthonormale ou orthonormée de E est une base pe1, ..., enq telle que
@i ‰ j, xei, ejy “ 0, @i, xei, eiy “ 1.

Théorème. Si E est un espace euclidien, alors E admet une base orthogonale.
En particulier E admet une base orthonormale.

Exercices.

1) (Théorème de Pythagore) Soient x, y P E. Montrer que xx, yy “ 0 ô ||x`y||2 “
||x||2 ` ||y||2.

2) Soit pe1, ..., enq une famille de vecteurs non nuls de E telle que @i ‰ j, xei, ejy “
0. Vérifier que les ei sont linéairement indépendants.

3) Trouver une base orthonormale pour E “ tpx, y, zq P �3 : x` y ` z “ 0u avec
le produit scalaire usuel.

II.2 Procédé de Gram-Schmidt

Théorème. Soit E un espace euclidien de base pe1, ..., enq. Il existe une unique
base pf1, ..., fnq de E telle que

(i) @1 ď i ď n, fi P ei ` Vectte1, ..., ei´1u ;

(ii) la base pf1, ..., fnq est orthogonale.

Remarque. En particulier, la base p f1
||f1|| , ...,

fn
||fn||q est orthonormale.

Nous allons démontrer le théorème plus général suivant.
Théorème. Soit pe1, ..., enq une base d’un �´espace vectoriel E. Soit φ :

E ˆ E Ñ � une forme bilinéaire symétrique telle que

@1 ď k ď n, détpφpei, ejqq1ďi,jďk ‰ 0.

† Alors il existe une unique base pf1, ..., fnq de E telle que :

i) @1 ď k ď n, fk P ek ` Vectte1, ..., ek´1u.
†. Cette condition est vérifiée si φ est un produit scalaire. En effet dans ce cas, pour tout
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ii) @1 ď k ‰ l ď n, φpfk, flq “ 0.

De plus, pour tout 1 ď k ď n, détpφpei, ejqq1ďi,jďk “ φpf1, f1q...φpfk, fkq.
Démo. On pose pour tout 1 ď k ď n, Ak “ pφpei, ejqq1ďi,jďk P Mkp�q.
Unicité.
Si pf1, ..., fnq et pf 1

1, ..., f
1
nq sont deux bases de E telles que

@1 ď k ‰ l ď n, φpfk, flq “ φpf 1
k, f

1
l q “ 0

@1 ď k ď n, fk, f
1
k P ek ` Vectte1, ..., ek´1u,

Alors @1 ď k ď n, Vecttf1, ..., fku “ Vectte1, ..., eku “ Vecttf 1
1, ..., f

1
ku. De plus,

si 1 ď k ď n, alors

fk ´ f 1
k P Vectte1, ..., ek´1u “ Vecttf1, ..., fku “ Vecttf 1

1, ..., f
1
ku.

Donc
f 1
k “ fk `

ÿ

1ďjďk´1

tjfj

pour certains réels tj. Mais alors

@1 ď i ď k ´ 1, φpf 1
k, fiq “ φpfk `

ÿ

1ďjďk´1

tjfj, fiq

“ φpfk, fiq `
ÿ

1ďjďk´1

tjφpfj, fiq

“ tiφpfi, fiq
car j ‰ i ñ φpfj, fiq “ 0.

1 ď k ď n, la matrice Ak “ pφpei, ejqq1ďi,jďk est de noyau nul car si

0 ‰ x “
¨
˝
x1
...
xk

˛
‚P �k ñ txAkx “

kÿ

i“1

kÿ

j“1

xixjφpei, ejq

“
kÿ

i“1

kÿ

j“1

φpxiei, xjejq

“ φp
kÿ

i“1

xiei,
kÿ

j“1

xjejq “ φpz, zq ą 0

où z :“ řk
i“1 xiei ‰ 0. Donc détAk ‰ 0.

9 / 49



L2 – Algèbre 4 2025-2026

Or, d’après la dernière phrase de l’énoncé (voir ci-dessous pour la justification),
φpfi, fiq ‰ 0 donc ti “ 0. D’où f 1

k “ fk.
Existence.
On définit par récurrence la base pf1, ..., fnq. On pose f1 “ e1. Alors φpf1, f1q “

φpe1, e1q “ détA1 ‰ 0. On suppose que k ě 1 et que f1, ..., fk sont déjà définis avec
les propriétés suivantes :

— @1 ď i ‰ď k, φpfi, fjq “ 0.

— @1 ď i ď k, fi P ei ` Vectte1, ..., ei´1u.
Supposons k ă n. On remarque que la matrice de passage Pk de la base

pe1, ..., ekq dans la base pf1, ..., fkq est triangulaire supérieure avec des 1 sur la
diagonale. †

Donc détPk “ 1. Or, d’après la formule de changement de bases pour les formes
bilinéaires, on a

pφpfi, fjqq1ďi,jďk “ tPkAkPk P Mkp�q
et en appliquant le déterminant

détpφpfi, fjqq1ďi,jďk “ détptPkqdétAkdétPk

“ détAk ‰ 0.

Or la matrice pφpfi, fjqq1ďi,jďk est diagonale donc

détpφpfi, fjqq1ďi,jďk “ φpf1, f1q....φpfk, fkq “ détAk ‰ 0.

En particulier @1 ď i ď k, φpfi, fiq ‰ 0. On peut donc poser

fk`1 “ ek`1 ´
kÿ

i“1

φpek`1, fiq
φpfi, fiq fi P ek`1 ` Vecttf1, ..., fku

Ď ek`1 ` Vectte1, ..., eku.
De plus, @1 ď j ď k, φpfk`1, fjq “ 0.
En effet,

@1 ď j ď k, φpfk`1, fjq “ φpek`1 ´
kÿ

i“1

φpek`1, fiq
φpfi, fiq fi, fjq

†. En effet, les coefficients Pkij de la matrice Pk vérifient fj “ řk
i“1 Pkijei. Comme les vecteurs

e1, ..., en forment une base et comme fj P ej `Vectte1, ..., ej´1u, on a @j, Pkjj “ 1, @i ą j, Pkij “
0.
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“ φpek`1, fjq ´
kÿ

i“1

φpek`1, fiq
φpfi, fiq φpfi, fjq

“ φpek`1, fjq ´ φpek`1, fjq
φpfj, fjq φpfj, fjq

“ 0.

Cela termine la construction de la famille pf1, ..., fnq par récurrence.
Exercices.

a) Si e1, ..., enq est une base orthonormale de E, alors @x “ x1e1 ` ... ` xnen, y “
y1e1 ` ... ` ynen P E, xx, yy “ x1y1 ` ... ` xnyn.

b) Appliquer le procédé de Gram-Schmidt à la base pe0, e1, e2, e3, e4q “ p1, X,X2, X3, X4q
de�rXsď4 avec le produit scalaire xf, gy “ ş1

´1
fptqgptq?

1´t2
dt “ şπ

0
fpcos xqgpcos xqdx.

f0 “ e0 “ 1, f1 “ e1 ´ xe1,f0y
xf0,f0yf0 “ X ´

şπ
0 cosxdxşπ

0 dx
1 “ X, f2 “ e2 ´ xe2,f1y

xf1,f1yf1 ´
xe2,f0y
xf0,f0yf0 “ X2´

şπ
0 cos3 xdxşπ
0 cos2 xdx

X´
şπ
0 cos2 xdxşπ

0 dx
1 “ X2´ 1

2
, f3 “ e3´ xe3,f2y

xf2,f2yf2´ xe3,f1y
xf1,f1yf1´

xe3,f0y
xf0,f0yf0 “ X3 ´

şπ
0 cos3 xpcos2 x´ 1

2
qdxşπ

0 pcos2 x´ 1
2

q2dx pX2 ´ 1
2
q ´

şπ
0 cos4 xdxşπ
0 cos2 xdx

X ´
şπ
0 cos3 xdxşπ

0 dx
1 “ X3 ´

3
4
X, f4 “ e4´ xe4,f3y

xf3,f3yf3´ xe4,f2y
xf2,f2yf2´ xe4,f1y

xf1,f1yf1´ xe4,f0y
xf0,f0yf0 “ X4´

şπ
0 cos4 xpcos3 x´ 3

4
cosxqdxşπ

0 pcos3 x´ 3
4
cosxq2dt pX3´

3
4
Xq ´

şπ
0 cos4 xpcos2 x´ 1

2
qdxşπ

0 pcos2 x´ 1
2

q2dx pX2 ´ 1
2
q ´

şπ
0 cos4 x cosxdxşπ

0 cos2 xdx
X ´

şπ
0 cos4 xdxşπ

0 dx
1 “ X4 ´ X2 ` 1

8

c) Critère de Sylvester. Soit A P Snp�q. Montrer que la forme bilinéaire symétrique
associée φA est un produit scalaire ô @1 ď i ď n, ∆ipAq “ détpAαβq1ďα,βďi ą 0.
Indication. Soit Ai “ pAαβq1ďα,βďi. Noter b “ pe1, ..., enq la base canonique de
�

n. Appliquer le procédé de Gram-Schmidt aux vecteurs e1, ..., en et obtenir
une base b1 “ pf1, ..., fnq orthogonale pour φA. Alors Di “ tPirφAspe1,...eiqPi où
Pi est la matrice de passage de la base pe1, ..., eiq dans la base pf1, ..., fiq qui est
triangulaire supérieure avec des 1 sur la diagonale et Di est la matrice de φA

dans la base pf1, ..., fiq qui est diagonale car la base pf1, ..., fiq est orthogonale.
Donc @i, φApf1, f1q...φApfi, fiq “ détDi “ ∆ipAq ...

Si tous les ∆ipAq ą 0, alors la forme bilinéaire φA est définie positive (dans
la base pf1, ..., fnq, c’est facile). Si φA est définie positive, alors pour tout i,
∆ipAq “ φApf1, f1q....φpfi, fiq ą 0.

Exemple. La matrice symétrique A “
¨
˝

2 ´1 0 0
´1 2 ´1 0
0 ´1 2 ´1
0 0 ´1 2

˛
‚définit un produit sca-

laire car ∆1pAq “ 2, ∆2pAq “ 3, ∆3pAq “ 4, ∆4pAq “ 5 ą 0.
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Fin du cours du 30/1
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