Intégrale de Riemann

Analyse 2, printemps 2026



Subdivisions d’un segment

Définition
Soient a < b deux réels. Une subdivision de [a, b] est une suite
finie (ag, a1, ..., an) telle que a9 = a, a, = b et a; < ajy1 pour

tout i € [0,n — 1].



ions d’'un segment

Définition

Soient a < b deux réels. Une subdivision de [a, b] est une suite
finie (ag, a1, ..., an) telle que a9 = a, a, = b et a; < ajy1 pour
tout i € [0,n — 1].

Le pas d'une subdivision (ag, a1, . .., an) est
max{aj+1 —a;: i € [0,n—1]}.



Subdivisions d’un segment

Définition

Soient a < b deux réels. Une subdivision de [a, b] est une suite
finie (ag, a1, ..., an) telle que a9 = a, a, = b et a; < ajy1 pour
tout i € [0,n — 1].

Le pas d'une subdivision (ag, a1, . .., an) est

max{aj11 — aj: i € [0,n—1]}.

Autrement dit : on découpe [a, b] en n sous-intervalles; le pas est
la longueur du plus grand de ces sous-intervalles.



Subdivisions d’un segment

Définition

Soient a < b deux réels, et (ag,...,an), (bo, ..., bm) deux
subdivisions de [a, b].

(bo, ..., bm) raffine (ao,...,an) si chaque [b;j, bj11] est contenu

dans un invervalle de la forme [ax, ax+1].



ions d’'un segment

Définition

Soient a < b deux réels, et (ag,...,an), (bo, ..., bm) deux
subdivisions de [a, b].

(bo, ..., bm) raffine (ao,...,an) si chaque [b;j, bj11] est contenu
dans un invervalle de la forme [ax, ax+1].

Autrement dit : la subdivision (b, ..., bym) a été obtenue en
découpant les intervalles de la subdivision (ao, ..., an).



Subdivisions d’un segment

Proposition
Soient a < b deux réels, et (ag,...,an) et (bo,...,bm) deux
subdivisions de [a, b]. Alors il existe une subdivision (co, ..., ¢p) qui

raffine en méme temps (ao, ..., an) et (bo, ..., bm).



ions d’'un segment

Proposition
Soient a < b deux réels, et (ag,...,an) et (bo,...,bm) deux

subdivisions de [a, b]. Alors il existe une subdivision (co, ..., ¢p) qui
raffine en méme temps (ao, ..., an) et (bo, ..., bm).

Idée : on énumere {ag,...,an} U{bo,...,bm} dans I'ordre

croissant.



Preuve de la proposition (non traitée en cours)

Démonstration.
Soit ¢, ..., ¢, qui énumerent dans |'ordre croissant |'ensemble
{ag,...,an bo,...,bm}. Comme ag = by = aona ¢ = a, de

méme on a ¢, = b. Par définition ¢; < ¢jy1 pour tout
i € [0, p— 1] donc (co,. .., cp) est une subdivision de [a, b].

Montrons que (cg, ..., ¢p) raffine (ao, ..., an). Soit j € [0,p — 1].
Soit i le plus grand entier tel que a; < ¢;. Notons que i < n
puisque ¢; < b = aj.

Par définition de /, on a ¢; < ajy1 donc ¢j1 < ajy1 puisque Cjy1
est par définition le plus petit élément de {ag,...,an; bo, ..., bm}
qui est strictement supérieur a ¢;.

On montre de la méme facon que (¢, ..., cp) raffine
(bo, ..., bm). O



Fonctions en escalier

Définition

Soient a < b deux réels; f: [a, b] — R est une fonction en escalier
s'il existe une subdivision (ap, ..., a,) de [a, b] telle que f soit
constante sur chaque intervalle ]a;, aj+1[. On dit que (ag, ..., an)
témoigne du fait que f est en escalier, ou encore est une

subdivision adaptée a f.


https://www.geogebra.org/m/vrhckdsd#material/chrn4pg2

Fonctions en escalier

Définition

Soient a < b deux réels; f: [a, b] — R est une fonction en escalier
s'il existe une subdivision (ap, ..., a,) de [a, b] telle que f soit
constante sur chaque intervalle ]a;, aj+1[. On dit que (ag, ..., an)
témoigne du fait que f est en escalier, ou encore est une

subdivision adaptée a f.

Une illustration (de T. Blossier).


https://www.geogebra.org/m/vrhckdsd#material/chrn4pg2

Fonctions en escalier : premieres propriétés

Proposition

1. Une fonction en escalier ne prend qu'un nombre fini de valeurs.



Fonctions en escalier : premieres propriétés

Proposition
1. Une fonction en escalier ne prend qu'un nombre fini de valeurs.

2. Une combinaison linéaire de fonctions en escalier sur [a, b] est
une fonction en escalier sur [a, b].



Fonctions en escalier : premieres propriétés

Proposition

1.
2.

Une fonction en escalier ne prend qu'un nombre fini de valeurs.

Une combinaison linéaire de fonctions en escalier sur [a, b] est
une fonction en escalier sur [a, b].

Un produit de fonctions en escalier sur [a, b] est une fonction
en escalier sur [a, b].



Fonctions en escalier : premieres propriétés

Proposition
1. Une fonction en escalier ne prend qu'un nombre fini de valeurs.

2. Une combinaison linéaire de fonctions en escalier sur [a, b] est
une fonction en escalier sur [a, b].

3. Un produit de fonctions en escalier sur [a, b] est une fonction
en escalier sur [a, b].

Preuve au tableau.



Intégrale d’une fonction en escalier

Définition
Soient a < b deux réels, f: [a, b] — R une fonction en escalier, et
o = (ap,...,an) une subdivision adaptée a f. On pose

ax +a
Z(ak—i-l_ak (k 2k+1> .



Intégrale d’une fonction en escalier

Définition
Soient a < b deux réels, f: [a, b] — R une fonction en escalier, et
o = (ap,...,an) une subdivision adaptée a f. On pose

ak+ a
Z(ak—i-l_ak (k 2k+1>

Sif>0,I(f,0) est Ia somme des aires des rectangles entre le
graphe de f et I'axe des abscisses.



Intégrale d’une fonction en escalier

Définition
Soient a < b deux réels, f: [a, b] — R une fonction en escalier, et
o = (ap,...,an) une subdivision adaptée a f. On pose

ak+ a
Z(ak—i-l_ak (k 2k+1>

Sif>0,I(f,0) est Ia somme des aires des rectangles entre le
graphe de f et I'axe des abscisses.

f(x)




Intégrale d’une fonction en escalier

Proposition
Soient a < b deux réels, f: [a, b] — R une fonction en escalier, et

o, T deux subdivisions adaptées a f. Alors I(f, o) = I(f, 7).


https://www.geogebra.org/m/vrhckdsd#material/chrn4pg2

Intégrale d’une fonction en escalier

Proposition
Soient a < b deux réels, f: [a, b] — R une fonction en escalier, et

o, 7 deux subdivisions adaptées a f. Alors I(f,0) = I(f,T).

Preuve mathématique : Si+ = (ko,..., bm) raffine ¢ = (ap, ..., an). Il existe

Jo, -+, Jn tels que pour tout k € {0,...,n} on ait b;, = a.

m—1 n—1iky1—1

b +b+1 b +b+1

(7)) = St =) (L) =53 (b -y (220

Jj=0 k=0 j=i)

n—Llikt1—1 ikt1—

A + ak+1 ak + aky1
= S e () P () (5,
k=0 j=iy k=0 J=ik
n—1

= Zf<m) (k41 —ak) = I(f,0) .
k=0 z

Résultat démontré si 7 raffine o. Dans le cas général on prend ~ qui raffine a la fois o

et 7, et on obtient I(f,o) = I(f,v) et I(f,7) = I(f,7).


https://www.geogebra.org/m/vrhckdsd#material/chrn4pg2

Intégrale d’une fonction en escalier

Proposition
Soient a < b deux réels, f: [a, b] — R une fonction en escalier, et

o, T deux subdivisions adaptées a f. Alors I(f, o) = I(f, 7).

“Preuve” par des dessins.


https://www.geogebra.org/m/vrhckdsd#material/chrn4pg2

Intégrale d’une fonction en escalier

Proposition
Soient a < b deux réels, f: [a, b] — R une fonction en escalier, et

o, T deux subdivisions adaptées a f. Alors I(f, o) = I(f, 7).
“Preuve” par des dessins.

Définition

Soient a < b deux réels, f: [a, b] — R une fonction en escalier, et

o une subdivision adaptée a f. On pose

b
/ f(x)dx=I(f,0) .


https://www.geogebra.org/m/vrhckdsd#material/chrn4pg2

Propriétés de l'intégrale des fonctions en escalier

Proposition
Soit a < b€ R; f, g en escalier sur [a, b]; o, 8 € R.

1. [Pldx=b—a.



Propriétés de l'intégrale des fonctions en escalier

Proposition
Soit a < b€ R; f, g en escalier sur [a, b]; o, 8 € R.

1. [Pldx=b—a.
2. Si f est a valeurs positives, fab f(x)dx >0 .
(positivité de I'intégrale)



Propriétés de l'intégrale des fonctions en escalier

Proposition
Soit a < b€ R; f, g en escalier sur [a, b]; o, 8 € R.

1. [Pldx=b—a.
2. Si f est a valeurs positives, fab f(x)dx >0 .
(positivité de I'intégrale)

3. [P(af(x) + Bg(x)) dx = a [P F(x)dx + B [P g(x) dx.
(linéarité de I'intégrale)



Propriétés de l'intégrale des fonctions en escalier

Proposition
Soit a < b€ R; f, g en escalier sur [a, b]; o, 8 € R.
1. [Pldx=b—a.
2. Si f est a valeurs positives, fab f(x)dx >0 .
(positivité de I'intégrale)
3. [P(af(x) + Bg(x)) dx = a [P F(x)dx + B [P g(x) dx.
(linéarité de I'intégrale)

4. ‘fab f(x)dx| < fab |f(x)| dx (inégalité triangulaire).




Propriétés de l'intégrale des fonctions en escalier

Proposition
Soit a < b€ R; f, g en escalier sur [a, b]; o, 8 € R.
1. [Pldx=b—a.
2. Si f est a valeurs positives, fab f(x)dx >0 .
(positivité de I'intégrale)
3. [P(af(x) + Bg(x)) dx = a [P f(x)dx + B [P g(x) dx.
(linéarité de I'intégrale)
4. ‘fab f(x)dx
5. S'il existe xi, ..., xx avec f(x) = g(x) pour tout
x & {x1,...,xg} alors fab f(x)dx = fabg(x) dx.

< fab |f(x)|dx (inégalité triangulaire).




Fonctions intégrables (au sens de Riemann)

On voudrait pouvoir intégrer plus de fonctions que les fonctions en
escalier, en particulier les fonctions continues!


https://www.geogebra.org/m/vrhckdsd#material/wrvwpbcs

Fonctions intégrables (au sens de Riemann)

On voudrait pouvoir intégrer plus de fonctions que les fonctions en
escalier, en particulier les fonctions continues!

Idée : | “aire sous la courbe” de f peut étre approchée par des aires
d'union de rectangles, autrement dit des intégrales de fonctions en

escalier.


https://www.geogebra.org/m/vrhckdsd#material/wrvwpbcs

Fonctions intégrables (au sens de Riemann)

On voudrait pouvoir intégrer plus de fonctions que les fonctions en
escalier, en particulier les fonctions continues!

Idée : | “aire sous la courbe” de f peut étre approchée par des aires
d'union de rectangles, autrement dit des intégrales de fonctions en
escalier.

Illustration.


https://www.geogebra.org/m/vrhckdsd#material/wrvwpbcs

Subdivisions pointées

Soita< beRR.

Définition
Une subdivision pointée ¥ =(ag, ..., an; x1,...,Xn) de [a, b] est la
donnée :

e d'une subdivision o = (ap, ..., an) de [a, b];

e de points xi,...,x, de [a, b] tels que pour tout k € {1,...,n}
on ait xx € [ak—1, ak].



Subdivisions pointées

Soita< beRR.

Définition
Une subdivision pointée ¥ =(ag, ..., an; x1,...,Xn) de [a, b] est la
donnée :

e d'une subdivision o = (ap, ..., an) de [a, b];

e de points xi,...,x, de [a, b] tels que pour tout k € {1,...,n}
on ait xx € [ak—1, ak].

Un cas particulier trés important : on divise [a, b] en n intervalles

de méme longueur 2=2, et ol I'on choisit x, 3 gauche de

n
b—a
n

I'intervalle [ax_1, ak] (c'est-a-dire xx = a+ (k —1)
de cet intervalle (xx = a+ kL;a)

) ou a droite



Sommes de Riemann

Définition

Soit a < b deux réels, f: [a,b] > R et X = (ao,...,an X1,---,Xn)
une subdivision pointée de [a, b]. La somme de Riemann associée a
fetaXest

n

S(F,T) = (ak — ak—1)f (x) -

k=1


https://www.geogebra.org/m/vrhckdsd#material/z5dxygw9

Sommes de Riemann

Définition

Soit a < b deux réels, f: [a,b] > R et X = (ao,...,an X1,---,Xn)
une subdivision pointée de [a, b]. La somme de Riemann associée a
fetaXest

n

S(F,T) = (ak — ak—1)f (x) -

k=1


https://www.geogebra.org/m/vrhckdsd#material/z5dxygw9

Sommes de Riemann

Définition

Soit a < b deux réels, f: [a,b] > R et X = (ao,...,an X1,---,Xn)
une subdivision pointée de [a, b]. La somme de Riemann associée a
fetaXest

n

S(F,T) = (ak — ak—1)f (x) -

k=1

Illustration.


https://www.geogebra.org/m/vrhckdsd#material/z5dxygw9

Sommes de Darboux supérieures et inférieures

Définition

Soit a< b€ R et f: [a, b] — R une fonction bornée. Etant donnée
une subdivision o = (ap, ..., ap) de [a, b] on définit pour tout
ke[l,n—1]

n—1

n—1
S_(f,o) = Z(ak+1 — ak)[ inf f et S.(f,0)= Z(3k+1 —ax) sup f
k=0

3,341 —o [ak,ak+1]


https://www.geogebra.org/m/vrhckdsd#material/exxsxnsp

Sommes de Darboux supérieures et inférieures

Définition
Soit a< b€ R et f: [a,b] — R une fonction bornée. Etant donnée

une subdivision o = (ap, ..., ap) de [a, b] on définit pour tout
kell,n—1]
n—1 n—1
S_(f,o) = Z(ak+1 —ak) inf f et Si(f,0)= Z(3k+1 —ax) sup f
= [ak;ak41] =0 [ak,ak41]

si 2 est une subdivision pointée dont la subdivision associée est o,
alors on a par définition S_(f,0) < S(f,X) < Sy(f,0).


https://www.geogebra.org/m/vrhckdsd#material/exxsxnsp

Sommes de Darboux supérieures et inférieures

Définition
Soit a< b€ R et f: [a,b] — R une fonction bornée. Etant donnée

une subdivision o = (ap, ..., ap) de [a, b] on définit pour tout
kell,n—1]
n—1 n—1
S_(f,o) = Z(ak+1 —ak) inf f et Si(f,0)= Z(3k+1 —ax) sup f
= [ak;ak41] =0 [ak,ak41]

si 2 est une subdivision pointée dont la subdivision associée est o,
alors on a par définition S_(f,0) < S(f,X) < Sy(f,0).

Illustration.


https://www.geogebra.org/m/vrhckdsd#material/exxsxnsp

Sommes de Darboux supérieures et inférieures

Définition
Soit a< b€ R et f: [a,b] — R une fonction bornée. Etant donnée

une subdivision o = (ap, ..., ap) de [a, b] on définit pour tout
kell,n—1]
n—1 n—1
S_(f,o) = Z(ak+1 —ak) inf f et Si(f,0)= Z(3k+1 —ax) sup f
= [aksak41 =0 [ak,ak41]

si 2 est une subdivision pointée dont la subdivision associée est o,
alors on a par définition S_(f,0) < S(f,X) < Sy(f,0).
Illustration.

Proposition
Soit a < b € R, f: [a, b] — R une fonction bornée et o, 7 deux

subdivisions de [a, b].

Si 7 raffine o,alors S_(f,0) < S_(f,7) et Si.(f,7) < S4(f,0)


https://www.geogebra.org/m/vrhckdsd#material/exxsxnsp

Preuve de la propriété précédente (non traitée en cours)

Démonstration.
Notons o = (ao, ...,an) et 7 = (bo, ..., bp). Comme 7 raffine o, il

existe jo =0 < ... < j, = b tels que b;, = a, pour tout k € [1, n].
Pour tout j € [k, jk+1 — 1] on ainfy, p. 1 f > infy o1 f) ce qui

donne
p—1 n—1jk+1—1
S-(f, T)—J;( bjs1 — bj) meH]f—Z_: ; b1 —by) ,inf f
n—1jk+1—1 n—1
- ;) J; Yt =AW = 2 G e I
> S_(f,0)

On démontre I'autre inégalité de maniére analogue. O



Un dernier lemme technique...

Proposition
Soit [a, b] un segment de R, f: [a, b] — R telle que |f(x)| < M

pour tout x € [a, b] et o, 7 deux subdivisions de [a, b]. Alors on a

~M|b—a| < S_(F,0) < Sy(F,7) < M|b—al



Un dernier lemme technique...

Proposition
Soit [a, b] un segment de R, f: [a, b] — R telle que |f(x)| < M

pour tout x € [a, b] et o, 7 deux subdivisions de [a, b]. Alors on a

~M|b—a| < S_(F,0) < Sy(F,7) < M|b—al

Démonstration.
En notant o = (ao,...,an) on a

n

S (fo)=> (ak— ak-1) [akiﬂfakl F> (ak— ak1)(—M) = —M(b— a)

La preuve pour la majoration de Sy (f,7) est similaire.

Pour montrer que S_(f,0) < Sy(o,T), considérons une subdivision p qui
raffine & la fois o et 7. On a alors S_(f,0) < S_(f, p) et Sy (f, p) < S.(f,7).

Par définition, on a S_(f, p) < S.(f, p), par conséquent
S_(f,0) < S.(f,7). O



La définition (enfin!)

Définition
Soit [a, b] un segment de R et S I'ensemble des subdivisions de
[a, b]. Soit f une fonction bornée sur [a, b]. On définit

I_(f) = sup 5_(f, O') et I+(f) = inf S+(f,0')
cEeS €S

Quand ces deux valeurs sont égales, on dit que f est intégrable sur
[a, b] et on note fab f(x) dx cette valeur commune.

Comme S_(f,0) < Sy (f,7) pour toutes les subdivisions o, 7, on a
I_(f) < S4(f, ) pour toute subdivision 7 donc I_(f) < I.(f).

Proposition
f est intégrable ssi pour tout £ > 0 il existe o telle que

Si(f,0) < S_(f,0)+e.



Une conséquence de la caractérisation

Proposition

Soit [a, b] un segment, et (ap, ..., an) une subdivision de [a, b].
Soit f: [a, b] — R une fonction bornée telle que la restriction de f
a [aj, aj+1] soit intégrable pour tout i € [0, n — 1]. Alors f est
intégrable sur [a, b] et



Une conséquence de la caractérisation

Proposition

Soit [a, b] un segment, et (ap, ..., an) une subdivision de [a, b].
Soit f: [a, b] — R une fonction bornée telle que la restriction de f
a [aj, aj+1] soit intégrable pour tout i € [0, n — 1]. Alors f est
intégrable sur [a, b] et

b n=1 La.,
lf(x)dx:;/ai f(x) dx

Idée de preuve (détails au tableau) : recoller des subdivisions bien

choisies des intervalles [aj, aj41]-



Convergence des sommes de Riemann

Proposition
Soit [a, b] un segment, f: [a, b] — R une fonction intégrable et

€ > 0. Alors il existe § > 0 tel que pour toute subdivision pointée
Y de [a, b] dont le pas est inférieur a 0 on ait
‘S(f, Y) - [EF(x) dx( <e.

En particulier, si f est intégrable sur [a, b] alors les sommes
n—1

b—a b—a b—aw b—a
p Zf(a+k . ) et p kzzlf<a+k p >

k=0

convergent toutes deux vers fab f(x) dx quand n tend vers +o0.



Preuve de la convergence (non traité en cours!)

Soit € > 0.

Fixons une subdivision o = (ao, ..., a,) telle que S_(f,0) > I_(f) — ¢,
ce qui est possible par définition d'une borne supérieure. Fixons

également M tel que |f(x)| < M pour tout x € [a, b], et notons § = ;.

Ensuite, considérons 7 = (by, . .., by) une subdivision pointée de [a, b]
dont le pas est plus petit que 6.

Notons A = {k € [1,m]: 3j € [1,n] [bk—1, b] C [aj—1, aj]}.

Pour tout k € A il existe un unique ji tel que [bx_1, bx] C [aj,—1,a;k]; et

on a alors inf| 1 <inflp,_ g T

Ak =153y



Preuve de la convergence des sommes de Riemann, suite

Si k & A alors il existe un unique ji tel que aj,—1 < b1 < aj, < by. Si
Jjk = ji pour k, k' & A alors k = k’. Donc A a moins de n éléments.

Sikdg Aona
inf - £f> inf f—-2M et inf  £f> inf f—-2M
[bk—1,b¢] (), —1,3j,] [bk—1,bx] (3, »aj, 1]
On obtient :
S (f,7)= by — by inf  f+ by — by_ inf f
(f,7) kez;( g k1) by—1,bk %( « « 1)[bk717bk]

n

> Z(aj —aj-1) SLUSEE B 2M|A]> " (bk — bk-1)
Jj=1 kZA

>S_(f,0) —4nMo > S_(f,0) —e > I_(f) — 2e.



Fin de la preuve de la convergence des sommes de Riemann

Nous avons montré que, pour tout € > 0, il existe § > 0 tel que
pour toute subdivision o dont le pas est inférieur a 0 on a
S_(f,o) > I_(f,0) — . On montre de méme que pour tout € > 0,
il existe ¢’ > 0 tel que pour toute subdivision o dont le pas est
inférieur a ¢’ on a S4(f,0) < I (f,0) +e.

Soit maintenant ¥ une subdivision pointée dont le pas est plus
petit que min(d,4’). On a alors, en notant o la subdivision associée
Ao

I_(f)—e<S_(f,0) <S(f,X) < S (f,0) < I (f,0)+¢.
Puisque f est intégrable, on a I_(f) = I.(f) = fab f(x) dx, et
finalement

/b F(x) dx — S(F,5)| < e.




