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Subdivisions d’un segment

Définition
Soient a < b deux réels. Une subdivision de [a, b] est une suite

finie (a0, a1, . . . , an) telle que a0 = a, an = b et ai < ai+1 pour

tout i ∈ J0, n − 1K.

Le pas d’une subdivision (a0, a1, . . . , an) est

max{ai+1 − ai : i ∈ J0, n − 1K}.

Autrement dit : on découpe [a, b] en n sous-intervalles ; le pas est

la longueur du plus grand de ces sous-intervalles.
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Subdivisions d’un segment

Définition
Soient a < b deux réels, et (a0, . . . , an), (b0, . . . , bm) deux

subdivisions de [a, b].

(b0, . . . , bm) raffine (a0, . . . , an) si chaque [bj , bj+1] est contenu

dans un invervalle de la forme [ak , ak+1].

Autrement dit : la subdivision (b0, . . . , bm) a été obtenue en

découpant les intervalles de la subdivision (a0, . . . , an).
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Subdivisions d’un segment

Proposition
Soient a < b deux réels, et (a0, . . . , an) et (b0, . . . , bm) deux

subdivisions de [a, b]. Alors il existe une subdivision (c0, . . . , cp) qui

raffine en même temps (a0, . . . , an) et (b0, . . . , bm).

Idée : on énumère {a0, . . . , an} ∪ {b0, . . . , bm} dans l’ordre

croissant.
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Preuve de la proposition (non traitée en cours)

Démonstration.
Soit c0, . . . , cp qui énumèrent dans l’ordre croissant l’ensemble

{a0, . . . , an; b0, . . . , bm}. Comme a0 = b0 = a on a c0 = a, de

même on a cp = b. Par définition ci < ci+1 pour tout

i ∈ J0, p − 1K donc (c0, . . . , cp) est une subdivision de [a, b].

Montrons que (c0, . . . , cp) raffine (a0, . . . , an). Soit j ∈ J0, p − 1K.
Soit i le plus grand entier tel que ai ≤ cj . Notons que i < n

puisque cj < b = an.

Par définition de i , on a cj < ai+1 donc cj+1 ≤ ai+1 puisque cj+1

est par définition le plus petit élément de {a0, . . . , an; b0, . . . , bm}
qui est strictement supérieur à cj .

On montre de la même façon que (c0, . . . , cp) raffine

(b0, . . . , bm).



Fonctions en escalier

Définition
Soient a < b deux réels ; f : [a, b] → R est une fonction en escalier

s’il existe une subdivision (a0, . . . , an) de [a, b] telle que f soit

constante sur chaque intervalle ]ai , ai+1[. On dit que (a0, . . . , an)

témoigne du fait que f est en escalier, ou encore est une

subdivision adaptée à f .

Une illustration (de T. Blossier).

https://www.geogebra.org/m/vrhckdsd#material/chrn4pg2
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Fonctions en escalier : premières propriétés

Proposition

1. Une fonction en escalier ne prend qu’un nombre fini de valeurs.

2. Une combinaison linéaire de fonctions en escalier sur [a, b] est

une fonction en escalier sur [a, b].

3. Un produit de fonctions en escalier sur [a, b] est une fonction

en escalier sur [a, b].

Preuve au tableau.
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Intégrale d’une fonction en escalier

Définition
Soient a < b deux réels, f : [a, b] → R une fonction en escalier, et

σ = (a0, . . . , an) une subdivision adaptée à f . On pose

I (f , σ) =
n−1∑
k=0

(ak+1 − ak)f

(
ak + ak+1

2

)
.

Si f ≥ 0, I (f , σ) est la somme des aires des rectangles entre le

graphe de f et l’axe des abscisses.
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Intégrale d’une fonction en escalier

Proposition
Soient a < b deux réels, f : [a, b] → R une fonction en escalier, et

σ, τ deux subdivisions adaptées à f . Alors I (f , σ) = I (f , τ).

“Preuve” par des dessins.

Définition
Soient a < b deux réels, f : [a, b] → R une fonction en escalier, et

σ une subdivision adaptée à f . On pose∫ b

a
f (x)dx = I (f , σ) .

https://www.geogebra.org/m/vrhckdsd#material/chrn4pg2
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Proposition
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(
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2

)
=

n−1∑
k=0

ik+1−1∑
j=ik

(bj+1 − bj )f

(
bj + bj+1
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)

=

n−1∑
k=0
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j=ik
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(
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)
(ak+1 − ak ) = I (f , σ) .

Résultat démontré si τ raffine σ. Dans le cas général on prend γ qui raffine à la fois σ

et τ , et on obtient I (f , σ) = I (f , γ) et I (f , τ) = I (f , γ).

“Preuve” par

des dessins.
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Propriétés de l’intégrale des fonctions en escalier

Proposition
Soit a < b ∈ R ; f , g en escalier sur [a, b] ; α, β ∈ R.

1.
∫ b
a 1 dx = b − a.

2. Si f est à valeurs positives,
∫ b
a f (x)dx ≥ 0 .

(positivité de l’intégrale)

3.
∫ b
a (αf (x) + βg(x)) dx = α

∫ b
a f (x) dx + β

∫ b
a g(x) dx.

(linéarité de l’intégrale)

4.
∣∣∣∫ b

a f (x) dx
∣∣∣ ≤ ∫ b

a |f (x)| dx (inégalité triangulaire).

5. S’il existe x1, . . . , xk avec f (x) = g(x) pour tout

x ̸∈ {x1, . . . , xk} alors
∫ b
a f (x) dx =

∫ b
a g(x) dx.
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Fonctions intégrables (au sens de Riemann)

On voudrait pouvoir intégrer plus de fonctions que les fonctions en

escalier, en particulier les fonctions continues !

Idée : l’“aire sous la courbe” de f peut être approchée par des aires

d’union de rectangles, autrement dit des intégrales de fonctions en

escalier.

Illustration.

https://www.geogebra.org/m/vrhckdsd#material/wrvwpbcs
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Subdivisions pointées

Soit a < b ∈ R.

Définition
Une subdivision pointée Σ =(a0, . . . , an; x1, . . . , xn) de [a, b] est la

donnée :

• d’une subdivision σ = (a0, . . . , an) de [a, b] ;

• de points x1, . . . , xn de [a, b] tels que pour tout k ∈ {1, . . . , n}
on ait xk ∈ [ak−1, ak ].

Un cas particulier très important : on divise [a, b] en n intervalles

de même longueur b−a
n , et où l’on choisit xk à gauche de

l’intervalle [ak−1, ak ] (c’est-à-dire xk = a+ (k − 1)b−a
n ) ou à droite

de cet intervalle (xk = a+ k b−a
n )
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Sommes de Riemann

Définition
Soit a < b deux réels, f : [a, b] → R et Σ = (a0, . . . , an; x1, . . . , xn)

une subdivision pointée de [a, b]. La somme de Riemann associée à

f et à Σ est

S(f ,Σ) =
n∑

k=1

(ak − ak−1)f (xk) .

Illustration.

https://www.geogebra.org/m/vrhckdsd#material/z5dxygw9
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Sommes de Darboux supérieures et inférieures

Définition
Soit a < b ∈ R et f : [a, b] → R une fonction bornée. Étant donnée
une subdivision σ = (a0, . . . , an) de [a, b] on définit pour tout
k ∈ J1, n − 1K

S−(f , σ) =
n−1∑
k=0

(ak+1 − ak) inf
[ak ,ak+1]

f et S+(f , σ) =
n−1∑
k=0

(ak+1 − ak) sup
[ak ,ak+1]

f

si Σ est une subdivision pointée dont la subdivision associée est σ,

alors on a par définition S−(f , σ) ≤ S(f ,Σ) ≤ S+(f , σ).

Illustration.

Proposition
Soit a < b ∈ R, f : [a, b] → R une fonction bornée et σ, τ deux

subdivisions de [a, b].

Si τ raffine σ,alors S−(f , σ) ≤ S−(f , τ) et S+(f , τ) ≤ S+(f , σ)

https://www.geogebra.org/m/vrhckdsd#material/exxsxnsp
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Preuve de la propriété précédente (non traitée en cours)

Démonstration.
Notons σ = (a0, . . . , an) et τ = (b0, . . . , bp). Comme τ raffine σ, il

existe j0 = 0 < . . . < jn = b tels que bjk = ak pour tout k ∈ J1, nK.
Pour tout j ∈ Jjk , jk+1 − 1K on a inf [bj ,bj+1] f ≥ inf [ak ,ak+1] f , ce qui

donne

S−(f , τ) =

p−1∑
j=0

(bj+1 − bj) inf
[bj ,bj+1]

f =
n−1∑
k=0

jk+1−1∑
j=jk

(bj+1 − bj) inf
[bj ,bj+1]

f

≥
n−1∑
k=0

jk+1−1∑
j=jk

(bj+1 − bj) inf
[ak ,ak+1]

f ≥
n−1∑
k=0

(ak+1 − ak) inf
[ak ,ak+1]

f

≥ S−(f , σ)

On démontre l’autre inégalité de manière analogue.



Un dernier lemme technique...

Proposition
Soit [a, b] un segment de R, f : [a, b] → R telle que |f (x)| ≤ M

pour tout x ∈ [a, b] et σ, τ deux subdivisions de [a, b]. Alors on a

−M|b − a| ≤ S−(f , σ) ≤ S+(f , τ) ≤ M|b − a|

Démonstration.
En notant σ = (a0, . . . , an) on a

S−(f , σ) =
n∑

k=1

(ak − ak−1) inf
[ak−1,ak ]

f ≥
n∑

k=1

(ak − ak−1)(−M) = −M(b − a)

La preuve pour la majoration de S+(f , τ) est similaire.

Pour montrer que S−(f , σ) ≤ S+(σ, τ), considérons une subdivision ρ qui

raffine à la fois σ et τ . On a alors S−(f , σ) ≤ S−(f , ρ) et S+(f , ρ) ≤ S+(f , τ).

Par définition, on a S−(f , ρ) ≤ S+(f , ρ), par conséquent

S−(f , σ) ≤ S+(f , τ).
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La définition (enfin !)

Définition
Soit [a, b] un segment de R et S l’ensemble des subdivisions de

[a, b]. Soit f une fonction bornée sur [a, b]. On définit

I−(f ) = sup
σ∈S

S−(f , σ) et I+(f ) = inf
σ∈S

S+(f , σ)

Quand ces deux valeurs sont égales, on dit que f est intégrable sur

[a, b] et on note
∫ b
a f (x) dx cette valeur commune.

Comme S−(f , σ) ≤ S+(f , τ) pour toutes les subdivisions σ, τ , on a

I−(f ) ≤ S+(f , τ) pour toute subdivision τ donc I−(f ) ≤ I+(f ).

Proposition
f est intégrable ssi pour tout ε > 0 il existe σ telle que

S+(f , σ) ≤ S−(f , σ) + ε.



Une conséquence de la caractérisation

Proposition

Soit [a, b] un segment, et (a0, . . . , an) une subdivision de [a, b].

Soit f : [a, b] → R une fonction bornée telle que la restriction de f

à [ai , ai+1] soit intégrable pour tout i ∈ J0, n − 1K. Alors f est

intégrable sur [a, b] et∫ b

a
f (x) dx =

n−1∑
i=0

∫ ai+1

ai

f (x) dx

Idée de preuve (détails au tableau) : recoller des subdivisions bien

choisies des intervalles [ai , ai+1].
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Convergence des sommes de Riemann

Proposition
Soit [a, b] un segment, f : [a, b] → R une fonction intégrable et

ε > 0. Alors il existe δ > 0 tel que pour toute subdivision pointée

Σ de [a, b] dont le pas est inférieur à δ on ait∣∣∣S(f ,Σ)− ∫ b
a f (x) dx

∣∣∣ ≤ ε.

En particulier, si f est intégrable sur [a, b] alors les sommes

b − a

n

n−1∑
k=0

f

(
a+ k

b − a

n

)
et

b − a

n

n∑
k=1

f

(
a+ k

b − a

n

)

convergent toutes deux vers
∫ b
a f (x) dx quand n tend vers +∞.



Preuve de la convergence (non traité en cours !)

Soit ε > 0.

Fixons une subdivision σ = (a0, . . . , an) telle que S−(f , σ) ≥ I−(f )− ε,

ce qui est possible par définition d’une borne supérieure. Fixons

également M tel que |f (x)| ≤ M pour tout x ∈ [a, b], et notons δ = ε
4nM .

Ensuite, considérons τ = (b0, . . . , bm) une subdivision pointée de [a, b]

dont le pas est plus petit que δ.

Notons A = {k ∈ J1,mK : ∃j ∈ J1, nK [bk−1, bk ] ⊆ [aj−1, aj ]}.

Pour tout k ∈ A il existe un unique jk tel que [bk−1, bk ] ⊆ [ajk−1, ajjk ] ; et

on a alors inf [ajk−1,ajk ]
f ≤ inf [bk−1,bk ] f .



Preuve de la convergence des sommes de Riemann, suite

Si k ̸∈ A alors il existe un unique jk tel que ajk−1 ≤ bk−1 ≤ ajk ≤ bk . Si

jk = jk′ pour k , k ′ ̸∈ A alors k = k ′. Donc Ac a moins de n éléments.

Si k ̸∈ A on a

inf
[bk−1,bk ]

f ≥ inf
[ajk−1,ajk ]

f − 2M et inf
[bk−1,bk ]

f ≥ inf
[ajk ,ajk+1]

f − 2M

On obtient :

S−(f , τ) =
∑
k∈A

(bk − bk−1) inf
[bk−1,bk ]

f +
∑
k ̸∈A

(bk − bk−1) inf
[bk−1,bk ]

f

≥

 n∑
j=1

(aj − aj−1) inf
[aj−1,aj ]

f

− 2M|A|
∑
k ̸∈A

(bk − bk−1)

≥ S−(f , σ)− 4nMδ ≥ S−(f , σ)− ε ≥ I−(f )− 2ε.



Fin de la preuve de la convergence des sommes de Riemann

Nous avons montré que, pour tout ε > 0, il existe δ > 0 tel que

pour toute subdivision σ dont le pas est inférieur à δ on a

S−(f , σ) ≥ I−(f , σ)− ε. On montre de même que pour tout ε > 0,

il existe δ′ > 0 tel que pour toute subdivision σ dont le pas est

inférieur à δ′ on a S+(f , σ) ≤ I+(f , σ) + ε.

Soit maintenant Σ une subdivision pointée dont le pas est plus

petit que min(δ, δ′). On a alors, en notant σ la subdivision associée

à σ :

I−(f )− ε ≤ S−(f , σ) ≤ S(f ,Σ) ≤ S+(f , σ) ≤ I+(f , σ) + ε .

Puisque f est intégrable, on a I−(f ) = I+(f ) =
∫ b
a f (x) dx , et

finalement ∣∣∣∣∫ b

a
f (x) dx − S(f ,Σ)

∣∣∣∣ ≤ ε.


