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Feuille no 1 : Calculs et révisions

Exercice 1 Simplifier autant que possible les expressions suivantes, où n ∈ N∗ et
x, y ∈ R∗ :

A =
(√

3
√

2
)4

; B = (xy2)3

(−x)2y3 ; C = 3n+2 − 3n+1 − 7 × 3n + 5 × 3n−1

D = 3 × 16n+1 + (−4)2n+1 + (−2)4n

8n − (−2)3n+2 ; E = 16n+1

3 + (−4)2n+1

5 + (−2)4n

6 .

Exercice 2 Soient n ∈ N∗ et a1, . . . , an, b1, . . . , bn ∈ C. En général, les égalités
suivantes sont-elles vraies ou fausses ? Savoir passer immédiatement aux écritures avec
des points de suspension et trouver des contre-exemples le cas échéant.

1.
n∑

k=1
(ak + bk) =

n∑
k=1

ak +
n∑

k=1
bk ;

2.
n∑

k=1
λak = λ

n∑
k=1

ak ;

3.
n∑

k=1
akbk =

(
n∑

k=1
ak

)(
n∑

k=1
bk

)
;

4.

∣∣∣∣∣
n∑

k=1
ak

∣∣∣∣∣ =
n∑

k=1
|ak|.

Exercice 3 Soient a, b, c ∈ C et n ∈ N.
1. Savoir développer immédiatement les expressions (a + b)3, (a − b)4 et (a2 + 1)5.
2. Développer (a + b + c)2.
3. Se souvenir de, ou retrouver la formule de factorisation de an−bn puis la démontrer.

4. Être sûr·e d’avoir compris l’égalité
n∑

k=0

(
n

k

)
an−kbk =

n∑
k=0

(
n

k

)
akbn−k. En parti-

culier, considérer l’écriture avec des points de suspension et comprendre la signi-
fication du changement d’indice k′ = n − k.

Exercice 4 On considère n ∈ N∗.

1. Que vaut
n∑

k=1
k ? Montrer que

n∑
k=1

k2 = n(n + 1)(2n + 1)
6 .

2. On veut montrer que
n∑

k=1
k3 =

(
n(n + 1)

2

)2
.

(a) Le faire par récurrence sur n.

(b) Le faire en calculant de deux manières différentes
n∑

k=1

(
(k + 1)4 − k4).

Exercice 5 Trouver les racines des polynômes suivants sans utiliser le discriminant :

P = X2 + 3X ; Q = −4X2 + 1 ; R = X2 + 4X − 5 ; S = 4X2 − 4X + 1.

Exercice 6 (∗) On considère un polynôme de la forme P = aX2 + 2b′X + c, avec
a ∈ R∗ et b′, c ∈ R. On pose ∆′ = b′2 − ac et on suppose que ∆′ > 0. Montrer que les
racines de P sont données par

x1 = −b′ +
√

∆′

a
et x2 = −b′ −

√
∆′

a
.

Que se passe-t-il si ∆′ = 0 ou si ∆′ < 0 ?

Exercice 7 Pour n ∈ N∗, on pose P = nXn+2 −(4n+1)Xn+1 +4(n+1)Xn −4Xn−1.
Vérifier que 2 est racine de P puis déterminer sa multiplicité.

Exercice 8 Pour x ∈ [1, 2], on pose f(x) = x + 1 + cos x

x2 − x + 2 .

1. En procédant de manière naïve, montrer que 1
5 ⩽ f(x) ⩽ 4 pour tout x ∈ [1, 2].

2. En étudiant d’abord g : x 7→ x + 1 + cos x, montrer que 1
2 ⩽ f(x) ⩽ 3

2 pour tout
x ∈ [1, 2].

Exercice 9 (∗)

1. Montrer que 0 ⩽
2x + 1 + cos 2x

2 − x2 ⩽ 4 pour tout x ∈ [0, 1].

2. Montrer que xe−
√

x

(ln x)2 − ln x + 1 ⩽
16e−2

3 pour tout x > 0.

Exercice 10
1. Rappeler les règles des croissances comparées.

2. Déterminer les limites de f(x) = ln x − ex, g(x) = x3

e
√

x
, h(x) = ln(1 + ex)√

x
et

k(x) = e
√

x + 1
ex2 + 1

quand x → +∞.

Exercice 11
1. (a) Connaître les propriétés usuelles des fonctions exp et ln.

(b) Tracer avec précision leurs graphes.



2. Mêmes questions avec ch et sh.
3. (a) Mêmes questions avec les fonctions sin, cos, tan. Pour les graphes, faire at-

tention aux tangentes en les points remarquables.
(b) Se rappeler des formules de trigonométrie.

(c) Démontrer que | sin x| ⩽ |x| pour tout x ∈ R et que sin x ⩾
2
π

x pour tout
x ∈ [0, π/2]. Illustrer ces inégalités à l’aide d’un dessin.

4. (a) Connaître les propriétés usuelles de Arcsin, Arccos et surtout Arctan.
(b) Tracer avec précision leurs graphes.

Exercice 12
1. Calculer π

3 − π

4 puis cos π

12 et sin π

12 . En déduire que tan π

12 = 2 −
√

3.

2. Exprimer sin x cos3 x comme combinaison linéaire de termes du type sin kx, avec
k ∈ N.

3. Exprimer ch5 x comme combinaison linéaire de termes du type ch(kx), avec k ∈ N.

Exercice 13 (∗) On considère la fonction f : x 7−→ Arcsin x + 1√
2(x2 + 1)

.

1. Quels sont les domaines de définition, de continuité et de dérivabilité de f ?
2. Calculer f ′ là où elle définie et en déduire une expression plus simple de f .
3. Représenter le graphe de f .

Exercice 14 Soit I un intervalle de R, f : I → R et a ∈ I.
1. Savoir écrire la définition avec des ε de la propriété : « lim

x→a
f(x) = ℓ ». Être sûr·e

d’avoir bien compris.
2. Même question avec la propriété : « f est dérivable en a ».
3. Être sûr·e d’avoir bien compris la différence entre ce qu’on note f ′(a) et f ′.

Exercice 15 Déterminer en quels points les fonctions suivantes sont dérivables et
calculer leur dérivée :

f : x ∈ R 7→ (1 + |x|)e−|x| ; g : x ∈ R 7→
{

0 si x ⩽ 0
e− 1

x2 sinon.

Exercice 16 Soient λ, µ ∈ R.
1. On considère la fonction f : R∗ → R définie par

f(x) =
{

2x + λ si x > 0
3x + µ si x < 0 .

À quelle condition sur λ, µ cette fonction est-elle prolongeable par continuité en 0 ?

2. Même question avec f : R∗ → R définie par

f(x) =


λ

x2 si x > 0
µ

x2 si x < 0
.

Exercice 17 (∗) Soit n ∈ Z. On définit f : R∗ → R, x 7→ xn cos 1
x

.

1. À quelle condition sur n la fonction f est-elle prolongeable par continuité en 0 ?
2. À quelle condition sur n ce prolongement est-il dérivable en 0 ?
3. À quelle condition sur n cette dérivée est-elle continue en 0 ?

Exercice 18 (∗) À n’aborder que si tout ce qui précède est maîtrisé.
Soit a = π

17 . Le but de ce problème est de trouver une formule pour cos a n’impliquant
que les quatre opérations usuelles et des racines carrées. On pose

x = cos 3a + cos 5a + cos 7a + cos 11a et y = cos a + cos 9a + cos 13a + cos 15a.

1. Montrer que x + y = 1
2.

2. Calculer le produit xy par la méthode suivante :
(a) Effectuer le produit terme à terme (cela donne 16 termes).
(b) Écrire alors xy comme une somme de cosinus d’angles de la forme 2ka, avec

1 ⩽ k ⩽ 8.
(c) En déduire que xy = −1.

3. Montrer que x > 0. En déduire les valeurs de x et y.
4. On pose z = cos 3a + cos 5a, t = cos 7a + cos 11a, u = cos a + cos 13a et v =

cos 9a + cos 15a. Calculer les produits zt et uv, puis exprimer z, t, u et v grâce à
des radicaux.

5. On pose X = cos a. Montrer que

z = 2X(8X4 − 8X2 + 1) et u = X − (8X4 − 8X2 + 1).

En déduire enfin que

cos π

17 = 1 −
√

17 +
√

34 − 2
√

17
16 +1

4

√
17 + 3

√
17

4 +
√

34 − 2
√

17(1 −
√

17)
8 +

√
34 − 2

√
17.

Le saviez-vous ? De cette formule, on peut facilement déduire une formule analogue
pour cos 2π

17 , où il n’y a que des opérations rationnelles et des racines carrées de nombres
rationnels : cela montre que le polygone régulier à 17 côtés est constructible à la règle
et au compas. C’est un théorème que Carl Friedrich Gauss (1777-1855) a démontré –
d’une autre manière ! – en 1801.


