Feuille d'exercices nº 1: Fonctions différentiables, différentielles

Exercice 1. Soit $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = 3x^2 - x + 2$. Soient $a, h \in \mathbb{R}$. Développer f(a + h) et montrer que f est différentiable en a.

Exercice 2. Soit $f: \mathbb{R} \to \mathbb{R}$ une application et soit $a \in \mathbb{R}$.

- 1. On suppose que f est dérivable en a. Montrer que f est différentiable en a et donner la différentielle de f en a en fonction de f'(a).
- 2. Réciproquement, on suppose f différentiable en a. Montrer que f est dérivable en a et donner f'(a) en fonction de $D_a f$.

Exercice 3. Soit $f: \mathbb{R}^n \to \mathbb{R}$ et soit $a \in \mathbb{R}^n$. On rappelle qu'on a les implications suivantes : $(A) \Rightarrow (B) \Rightarrow (C)$ où

- (A) Les dérivées partielles de f existent et sont continues au voisinage de a.
- (B) f est différentiable en a.
- (C) Les dérivées partielles de f existent en a.

À l'aide des fonctions suivantes, montrer que les réciproques sont fausses en général (respectivement $(B) \Rightarrow (A)$ et $(C) \Rightarrow (B)$).

$$f:(x,y)\longmapsto \begin{cases} x^2\sin\left(\frac{1}{x}\right) + y^2\sin\left(\frac{1}{y}\right) & \text{si } xy \neq 0\\ x^2\sin\left(\frac{1}{x}\right) & \text{si } y = 0 \text{ et } x \neq 0\\ y^2\sin\left(\frac{1}{y}\right) & \text{si } x = 0 \text{ et } y \neq 0\\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

et

$$g:(x,y)\longmapsto \left\{ egin{array}{ll} \frac{xy^2}{x^2+y^2} & {
m si}\ (x,y)
eq (0,0) \\ 0 & {
m si}\ (x,y) = (0,0) \end{array} \right.$$

Exercice 4. Calculer là où elle existe la différentielle des applications $(x,y) \in \mathbb{R}^2 \longmapsto x+y$ et $(x,y,z) \in \mathbb{R}^3 \longmapsto (x^2+y^2+z^2)^{\frac{1}{2}}$.

Exercice 5. Soit f une fonction C^1 de \mathbb{R} vers \mathbb{R} . Calculer la différentielle des fonctions $(x,y) \in \mathbb{R}^2 \mapsto f(x+y)$ et $(x,y) \in \mathbb{R}^2 \mapsto f(x-y)$.

Exercice 6. Soient U un ouvert de \mathbb{R}^2 , $f:U\to\mathbb{R}$ une application différentiable, $a\in U,v\in\mathbb{R}^2$. Calculer la dérivée de $t\mapsto f(a+tv)$ en t=0 en fonction de la différentielle de f en a. Application: $f(x,y)=\exp(x^2-y^3), a=(0,1), v=(2,0)$.

Exercice 7. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ donnée par f(0,y) = 0 et $f(x,y) = \frac{y^2}{x}$ si $x \neq 0$. Montrer que f admet une dérivée directionnelle au point (0,0) suivant tout vecteur de \mathbb{R}^2 alors que f n'est pas continue en ce point.