Preuve de D’Alembert-Gauss

Théoréme : Tout polynéme non constant P € C[X] posséde au moins une
racine dans C.

Démonstration. Soit P(z) = an2™ + -+ + a1z + ap un polynéme non constant.
Supposons par 'absurde que P(z) # 0 pour tout z € C. Alors la fonction :
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est entiere (holomorphe sur C). Montrons alors que f est bornée.
Pour |z| suffisamment grand, on a :
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En effet, pour |z| > R avec R assez grand :
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Sur le compact |z| < R, f est continue donc bornée. Par le majestueux
théoréme de Liouville, P(z) serait constant, ce qui contredit 'hypothése initiale.
La contradiction obtenue prouve l'existence d’au moins un zy € C tel que

P(Zo) =0.
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