Algèbre linéaire et géométrie vectorielle, L3 Mathématiques pour l'enseignement.

Contrôle final (Session II) - Mercredi 05/07/2023 durée : 1h30

L'usage de tout document et de tout matériel électronique est interdit.

Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Dans toutes les questions, il sera tenu le plus grand compte de la rigueur de la rédaction.

Barème indicatif: 5+5+4+6=20.

Préambule : On note $\mathbb{R}[x]$ le \mathbb{R} -espace vectoriel de polynômes à coefficients dans \mathbb{R} . Pour deux entiers $m, n \geq 1$ et un corps k, on note $\mathcal{M}_{m,n}(k)$ l'ensemble des matrices de taille $m \times n$ (c.-à.-d., de m lignes et n colonnes) à coefficients dans k. On note $\mathcal{M}_n(k)$ l'ensemble des matrices carrées de taille $n \times n$ à coefficients dans k.

Exercice 1 (Questions de cours). Soit $T: V \to W$ une application linéaire entre deux k-espaces vectoriels V et W.

- 1. Donner la définition du noyau de T, noté ker(T).
- 2. Montrer que $\ker(T)$ est un sous-espace vectoriel de V.
- 3. On suppose que $\dim(V) = \dim(W) = n < +\infty$. Montrer que si T est injective et $\{x_1, \ldots, x_n\}$ est une base de V, alors $\{T(x_1), \ldots, T(x_n)\}$ est une base de W.
- 4. En déduire que si T est injective alors T est surjective.
- 5. Donner un exemple d'un endomorphisme de $\mathbb{R}[x]$ qui est injectif mais pas surjectif.

Exercice 2. Soient $A \in \mathcal{M}_{3,2}(\mathbb{R})$ et $B \in \mathcal{M}_{2,3}(\mathbb{R})$ tels que

$$AB = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Le but de cet exercice est de montrer que $BA = I_2$. On note $f : \mathbb{R}^2 \to \mathbb{R}^3$ l'application linéaire canoniquement associée à la matrice A et $g : \mathbb{R}^3 \to \mathbb{R}^2$ l'application linéaire canoniquement associée à la matrice B. On pose $C = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 .

- 1. Montrer que la composition $f \circ g$ est un endomorphisme de \mathbb{R}^3 .
- 2. Déterminer la matrice de $f \circ g$ dans la base canonique \mathcal{C} .
- 3. Montrer que $\{g(e_2), g(e_3)\}$ est une base de \mathbb{R}^2 .

- 4. Montrer que la composition $g \circ f$ est l'identité de \mathbb{R}^2 .
- 5. En déduire que $BA = I_2$.

Exercice 3. Le but de cet exercice est de montrer que si deux matrices à coefficients dans \mathbb{R} sont semblables dans $\mathcal{M}_n(\mathbb{C})$ alors elles sont semblables dans $\mathcal{M}_n(\mathbb{R})$. Soient A, B deux matrices dans $\mathcal{M}_n(\mathbb{R})$. On suppose qu'il existe une matrice inversible $P \in \mathcal{M}_n(\mathbb{C})$ telle que $B = PAP^{-1}$. On pose $S = \mathcal{R}e(P)$ (la partie réelle de P) et $T = \mathcal{I}m(P)$ (la partie imaginaire de P) en sorte que P = S + iT.

- 1. Montrer que SA = BS et que TA = BT.
- 2. On pose $R(x) = \det(S + xT)$. Montrer que R(x) est un polynôme non nul.
- 3. En déduire qu'il existe $x_0 \in \mathbb{R}$ tel que la matrice $S + x_0T$ est inversible.
- 4. En déduire qu'il existe une matrice inversible $Q \in \mathcal{M}_n(\mathbb{R})$ telle que $B = QAQ^{-1}$.

Exercice 4. Soit T un endomorphisme d'un \mathbb{R} -espace vectoriel V de dimension $n \geq 2$. On suppose que les seuls sous-espaces de V stables par T sont V et $\{0_V\}$.

- 1. T possède-t-il des valeurs propres dans \mathbb{R} ? Justifier votre réponse.
- 2. En déduire que n est pair.
- 3. Soit $x \in V \setminus \{0_V\}$. Montrer que la famille $\mathcal{B}(x) = (x, T(x), T^2(x), \dots, T^{n-1}(x))$ est libre.
- 4. En déduire qu'il existe $a_0, a_1, \ldots, a_{n-1} \in \mathbb{R}$ tels que

$$T^{n}(x) = a_{0}x + a_{1}T(x) + \dots + a_{n-1}T^{n-1}(x).$$

- 5. Déterminer la matrice de T dans la base $\mathcal{B}(x)$.
- 6. Donner un exemple d'un endomorphisme f de \mathbb{R}^2 tel que les seuls sous-espaces stables par f sont $\{(0,0)\}$ et \mathbb{R}^2 .

Bonus (2 pts): Montrer que pour tout endomorphisme T d'un \mathbb{R} -espace vectoriel V non nul, il existe un sous-espace de V stable par T de dimension 1 ou 2.