Algèbre linéaire et géométrie vectorielle, L3 Mathématiques pour l'enseignement.

Contrôle final - Mardi 30/04/2024 durée : 2 h

L'usage de tout document et de tout matériel électronique est interdit.

Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Dans toutes les questions, il sera tenu le plus grand compte de la rigueur de la rédaction.

Barème indicatif: 2+4+4+5+5=20.

Exercice 1 (Questions de cours).

- 1. Donner la définition du noyau $\operatorname{Ker}(T)$ d'une application linéaire $T:V\to W$ entre deux k-espaces vectoriels V et W. Montrer que $\operatorname{Ker}(T)$ est un sous-espace de V.
- 2. Donner l'énoncé du Théorème de Cayley-Hamilton.

Exercice 2. Soit $T: V \to W$ une application linéaire entre deux \mathbb{R} -espaces vectoriels V et W.

- 1. Montrer que l'application T est injective si et seulement si pour toute famille libre $\{v_1, v_2, \dots, v_n\}$ de V on a que $\{T(v_1), T(v_2), \dots, T(v_n)\}$ est une famille libre de W.
- 2. Montrer que l'application T est surjective si et seulement si pour toute famille génératrice $\{v_1, v_2, \ldots, v_n\}$ de V on a que $\{T(v_1), T(v_2), \ldots, T(v_n)\}$ est une famille génératrice de W.

Exercice 3. Soit $V = \mathbb{R}[x]_2$ l'espace vectoriel réel des polynômes réels de degré inférieur ou égal à 2. On définit l'application $T: V \to V$ par $T(p(x)) = p(x+1) - x^2 p(0)$.

- 1. Vérifier que T est une application linéaire de V dans V.
- 2. Écrire la matrice de T relative à la base $(1, x, x^2)$ de V.
- 3. Déterminer le noyau et l'image de T.
- 4. Montrer que si T(p(x)) = p(x), alors p(x) = 0.

Exercice 4. On pose

- 1. Déterminer le rang de la matrice A.
- 2. Par application du *Théorème du rang*, en déduire la dimension du noyau $\operatorname{Ker}(A) = \{\vec{x} \in \mathbb{R}^4 : A\vec{x} = \vec{0}\}.$
- 3. En déduire que 0 est une valeur propre de A et qu'il existe une famille libre $\mathcal{F}_0 = \{v_1, v_2, v_3\}$ de vecteurs propres associés à la valeur propre 0.
- 4. Montrer que 4 est aussi une valeur propre de A. (Indication : On observe que la somme de chaque ligne de A est égal à 4.)
- 5. En déduire que A est diagonalisable et déterminer son polynôme minimal.

Exercice 5. Soit A une matrice réelle de taille 2×2 telle que $A^3 = I$. On note $m_A(x) \in \mathbb{R}[x]$ le polynôme minimal de A et $p_A(x) \in \mathbb{R}[x]$ le polynôme caractéristique de A.

- 1. Montrer que A est inversible.
- 2. Déterminer deux polynômes f(x) et g(x) tels que $m_A(x) \in \{f(x), g(x)\}$ et en déduire que A est diagonalisable.
- 3. Déterminer deux polynômes f(x) et g(x) tels que $p_A(x) \in \{f(x), g(x)\}.$
- 4. Si $A \neq I$, déterminer $m_A(x)$ et $p_A(x)$.
- 5. En déduire que si $A \neq I$ alors $A + A^{-1} = -I$.

Bonus (2 points)] Il faut sélectionner "Vrai" ou "Faux" et donner une justification : Si l'assertion est vraie donner une démonstration et si elle est fausse donner un contre-exemple en justifiant le contre-exemple.

Soit A une matrice carrée réelle.

- 1. Si A est diagonalisable, alors A^2 est diagonalisable.
 - A. Vrai B. Faux
- 2. Si A^2 est diagonalisable, alors A est diagonalisable.
 - A. Vrai B. Faux