Vrai ou Faux ? A propos du CM du 28/02

Analyse 4 21/03/2025

21/03/2025

Vrai/Faux 1 - Dérivées directionnelles

Si $f: \mathbb{R}^n \to \mathbb{R}$ admet des dérivées partielles en $x_0 \in \mathbb{R}^n$, alors f admet une dérivée directionnelle suivant tout vecteur non-nul.

Vrai/Faux 1 - Dérivées directionnelles

Si $f: \mathbb{R}^n \to \mathbb{R}$ admet des dérivées partielles en $x_0 \in \mathbb{R}^n$, alors f admet une dérivée directionnelle suivant tout vecteur non-nul.

FAUX. C'est le contraire ! Si *f* admet une dérivée directionnelle suivant tout vecteur, cela veut dire que

$$\forall v \in \mathbb{R}^n \setminus \{0\}, \quad \frac{\partial f}{\partial v}(x_0) = \lim_{\substack{t \to 0 \\ t \neq 0}} \frac{f(x_0 + tv) - f(x_0)}{t} \quad \text{existe.}$$

Donc, en particulier, pour tout $1 \le i \le n$, f admet une dérivée directionnelle suivant chacun des vecteurs de base $e_i = (0,...,1,0,...,0)$:

$$\frac{\partial f}{\partial e_i}(x_0) = \frac{\partial f}{\partial x_i}(x_0) = \lim_{t \to 0 \atop t \neq 0} \frac{f(x_0 + t(0, ..., 1, 0, ..., 0)) - f(x_0)}{t} \quad \text{existe}.$$

4□▶ 4₫▶ 4½▶ 4½▶ ½ 90

Vrai/Faux 2 - Dérivées partielles

Si $f: \mathbb{R}^n \to \mathbb{R}$ admet des dérivées partielles en $x_0 \in \mathbb{R}^n$, alors f est continue en x_0 .

Vrai/Faux 2 - Dérivées partielles

Si $f: \mathbb{R}^n \to \mathbb{R}$ admet des dérivées partielles en $x_0 \in \mathbb{R}^n$, alors f est continue en x_0 .

FAUX. On a donné un contre-exemple en CM, $f:\mathbb{R}^2 \to \mathbb{R}$ définie par

$$f(x,y) = \begin{cases} \frac{y^2}{x} & \text{si } x \neq 0\\ 0 & \text{sinon} \end{cases}$$

qui admet des dérivées partielles en $x_0 = (0,0)$,

$$\frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial y}(0,0) = 0$$

mais f n'est pas continue en (0,0) car $f(x,\sqrt{x}) \to 1 \neq 0 = f(0,0)$ quand $x \to 0^+$.

Vrai/Faux 3 - Implications

Soit $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}^p$, Ω ouvert de \mathbb{R}^n et $x_0 \in \Omega$, alors on a $\frac{\partial f}{\partial v}(x_0) \text{ existe pour tout vecteur } v \in \mathbb{R}^n \setminus \{0\}$ $\Rightarrow \forall i \in \{1,...,n\}, \frac{\partial f}{\partial x_i}(x_0) \text{ existe}$ $\Rightarrow D_{x_0} f \text{ existe}$

Vrai/Faux 3 - Implications

Soit $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}^p$, Ω ouvert de \mathbb{R}^n et $x_0 \in \Omega$, alors on a $\frac{\partial f}{\partial v}(x_0) \text{ existe pour tout vecteur } v \in \mathbb{R}^n \setminus \{0\}$ $\Rightarrow \forall i \in \{1,...,n\}, \frac{\partial f}{\partial x_i}(x_0) \text{ existe}$ $\Rightarrow D_{x_0} f \text{ existe}$

FAUX. La première implication est correcte (Vrai/Faux 1), mais l'existence des dérivées partielle n'implique pas la différentiabilité! On a plutôt

$$D_{x_0}f$$
 existe $\Rightarrow \forall v \in \mathbb{R}^n \setminus \{0\}, \frac{\partial f}{\partial v}(x_0)$ existe $\Rightarrow \forall i \in \{1,...,n\}, \frac{\partial f}{\partial x_i}(x_0)$ existe

Vrai/Faux 4 - Calcul d'une différentielle

Soit $\Omega = \mathbb{R}^* \times \mathbb{R} \times \mathbb{R}$, $f : \Omega \to \mathbb{R}$ définie par

$$\forall (x,y,z) \in \Omega, \quad f(x,y,z) = \frac{e^z}{x}y.$$

f est différentiable et on a, $\forall X=(x,y,z)\in\Omega$, $\forall h=(h_1,h_2,h_3)\in\mathbb{R}^3$,

$$D_X f(h) = -\frac{e^z}{x^2} y h_1 + \frac{e^z}{x} h_2 + \frac{e^z}{x} y h_3$$

Vrai/Faux 4 - Calcul d'une différentielle

Soit $\Omega = \mathbb{R}^* \times \mathbb{R} \times \mathbb{R}$, $f : \Omega \to \mathbb{R}$ définie par

$$\forall (x,y,z) \in \Omega, \quad f(x,y,z) = \frac{e^z}{x}y.$$

f est différentiable et on a, $\forall X=(x,y,z)\in\Omega$, $\forall h=(h_1,h_2,h_3)\in\mathbb{R}^3$,

$$D_X f(h) = -\frac{e^z}{x^2} y h_1 + \frac{e^z}{x} h_2 + \frac{e^z}{x} y h_3$$

VRAI. f est différentiable comme quotient et produit de fonctions différentiables dont le dénominateur ne s'annule pas sur Ω . Ainsi, $\forall X=(x,y,z)\in\Omega, \ \forall h=(h_1,h_2,h_3)\in\mathbb{R}^3$,

$$D_X f(h) = \frac{\partial f}{\partial x}(X)h_1 + \frac{\partial f}{\partial y}(X)h_2 + \frac{\partial f}{\partial z}(X)h_3 = -\frac{e^z}{x^2}yh_1 + \frac{e^z}{x}h_2 + \frac{e^z}{x}yh_3$$

Un outil de partage prof-étudiant.e.s : la boîte "MATH"

Une boîte où vous pouvez déposer, à chaque CM, écrit sur une feuille, anonyme ou pas, quelque chose en rapport avec :

- les Mathématiques

 Des questions techniques/conceptuelles en lien avec l'UE.
- vos Attentes Réexpliquer quelque chose en CM, exercices en plus, etc.
- des Témoignages
 CM/TD, camarade qui a des problèmes.
- vos **H**umeurs Exprimer votre ressenti du jour, si vous allez bien ou pas, etc.

 ${\bf BUT:} permettre une meilleure communication/compréhension mutuelle.$

Evidemment, vous pouvez toujours prendre rendez-vous avec moi ou me poser des questions lors des pauses/fins des CM/TD.