L2, Semestre de Printemps 2024-2025

Feuille 4 : Différentiabilité

Objectifs	OUI	NON
Manipuler la définition de différentiabilité d'une application		
Déterminer la différentielle d'une application en un point		
Calculer les dérivées partielles (premières) d'une application		
Déterminer le développement de Taylor à l'ordre 1 d'une application différentiable		
Calculer la différentielle d'une composée		
Montrer qu'une application n'est pas différentiable en un point		
Déterminer la matrice jacobienne et le jacobien d'une application		
Calculer le gradient d'une application		
Savoir dériver le long d'un arc paramétré		
Déterminer le plan tangent en un point à une surface d'équation $z = f(x, y)$		

Exercice 1. Preuve fausse à corriger

Déterminer toutes les erreurs commises dans la preuve ci-dessous et la corriger. Soit $f: \mathbb{R}^2 \to \mathbb{R}$, $(x,y) \mapsto e^{-x^2-y^2} \sin(x^2+y^2)$ alors, pour tout $(h,k) \in \mathbb{R}^2$,

$$\frac{|f(h,k)-f(0,0)|}{\|(h,k)\|_2^2} = \frac{e^{-h^2-k^2}\left|\sin(h^2+k^2)\right|}{h^2+k^2} \le \frac{1}{h^2+k^2} \to +\infty$$

quand $(h,k) \to (0,0)$, où on a utilisé que $|\sin(t)| \le 1$ et $e^{-t} \le 1$ pour tout $t \in \mathbb{R}$. Ainsi, f n'est pas différentiable en (0,0).

Exercice 2. Différentielle et fonction linéaire

Soient $(n,p) \in (\mathbb{N}^*)^2$ et $f : \mathbb{R}^n \to \mathbb{R}^p$ différentiable. On suppose que pour tout $\lambda \in \mathbb{R}$ et tout $x \in \mathbb{R}^n$, $f(\lambda x) = \lambda f(x)$.

- 1. Montrer que f(0) = 0.
- 2. Montrer que f est linéaire.

Exercice 3. Calcul de différentielles - Applications directes du cours

Déterminer les différentielles $D_{x_0}f$ pour chacune des applications f et des points x_0 suivants.

- 1. $f: \mathbb{R} \to \mathbb{R}, f(x) = -4x + 1, x_0 = \sqrt{\pi}.$
- 2. $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^x + x^2 \sin(x)$, $x_0 = 0$.
- 3. $f: \mathbb{R}^2 \to \mathbb{R}$, f(x,y) = 3x y, $x_0 = (1,2)$.
- 4. $f: \mathbb{R}^2 \to \mathbb{R}^2$, f(x,y) = (2x+y, 3x-2y), $x_0 = (0,0)$.
- 5. $f: \mathbb{R}^2 \to \mathbb{R}, f(x,y) = 3||(x,y)||_2^2 + \Phi(x,y), x_0 = (1,-1)$ où $\Phi: \mathbb{R}^2 \to \mathbb{R}$ est bilinéaire.

Exercice 4. Dérivées directionnelles

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ définie par

$$f(x,y) = \begin{cases} y^2 \ln|x| & \text{si } x \neq 0\\ 0 & \text{sinon} \end{cases}$$

- 1. Montrer que f admet en (0,0) une dérivée suivant tout vecteur
- 2. f est-elle différentiable en (0,0)?

Exercice 5. Calcul de dérivées partielles

Calculer les dérivées partielles des fonctions suivantes et préciser le domaine de validité des calculs.

- 1. $f(x,y) = \sqrt{x^2 + y^2}$.
- 2. $f(x,y) = x\cos(x+2y)$.
- 3. $f(x,y) = x^y$.
- 4. $f(x,y) = \frac{x+y}{x^2 + u^2}$.
- 5. $f(x,y) = \arctan(2x 3y)$.
- 6. $f(x,y) = \ln(x^2 + y^2)$.

Exercice 6. Différentielles de fonctions composées

Soit $f: \mathbb{R} \to \mathbb{R}$ et $g: \mathbb{R}^2 \to \mathbb{R}$ deux fonctions différentiables. Justifier que les applications suivantes sont différentiables et calculer leur différentielle.

- 1. $\phi : \mathbb{R} \to \mathbb{R}, x \mapsto g(x, -x)$.
- 2. $\psi: \mathbb{R}^2 \to \mathbb{R}, (x,y) \mapsto g(y,x).$
- 3. $h: \mathbb{R}^2 \to \mathbb{R}, (x,y) \mapsto f(x+g(x,y)).$
- 4. $k: \mathbb{R}^2 \to \mathbb{R}, (x,y) \mapsto f(xy^2g(x,y)).$

Exercice 7. Développement à l'ordre 1 et composées

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ différentiable au point (0,1) et tel que

$$f(0,1) = 0$$
, $\frac{\partial f}{\partial x}(0,1) = 1$ et $\frac{\partial f}{\partial y}(0,1) = 2$.

- 1. Déterminer le développement de Taylor-Young à l'ordre 1 de f au voisinage du point (0,1).
- 2. En déduire le développement limité à l'ordre 1 et au voisinage de 0 des fonctions $t \mapsto f(-2t, e^t)$ et $t \mapsto f(t, \cosh t)$.

Exercice 8. Valeur approchée

- 1. Déterminer une valeur approchée (à la main, sans machine!) du réel $\alpha=\frac{(0.998)^3}{1.003}$ en utilisant l'approximation linéaire d'une certain fonction à déterminer au voisinage d'un point que l'on précisera.
- 2. A l'aide d'une machine, on trouve que $\alpha \approx 0.9910389$ où toutes les décimales sont exactes. Comparer cette valeur avec celle trouvée à la question précédente en expliquant pourquoi l'ordre de grandeur de l'erreur entre celles-ci était prévisible.

Exercice 9. Développement à l'ordre 1 d'une fonction de n variables

Soit $f: \mathbb{R}^n \setminus \{0\} \to \mathbb{R}$ définie par

$$\forall x = (x_1, ..., x_n) \neq (0, ..., 0), \quad f(x) = \frac{1}{\|x\|_2^2},$$

et, pour $a=(a_1,...,a_n)\in\mathbb{R}^n$ $g_a:\mathbb{R}^n\to\mathbb{R}$ définie par

$$\forall x = (x_1, ..., x_n) \in \mathbb{R}^n, \quad g_a(x) = \langle a, x \rangle e^{-\|x\|_2^2}.$$

Après avoir brièvement expliqué pourquoi f et g sont différentiables, déterminer le développement à l'ordre 1 de ces fonctions au voisinage de $y = (y_1, ...y_n)$, non-nul pour f, quelconque pour g.

Exercice 10. Différentiabilité à l'origine

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ définie par

$$f(x,y) = \begin{cases} x^2 \sin\left(\frac{1}{\sqrt{x^2 + y^2}}\right) & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

- 1. Montrer que f admet des dérivées partielles en (0,0).
- 2. Si f était différentiable en (0,0), déduire de la question précédente quel serait sa différentielle.
- 3. Montrer que f est différentiable en (0,0).

Exercice 11. Calculs de matrices jacobiennes, de différentielles et de jacobiens

Déterminer la matrice jacobienne, la différentielle et le jacobien (quand il existe) des applications f suivantes au point a donné.

- 1. $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = \sin(x^2y)$, a = (1,0).
- 2. $f: (\mathbb{R}^*)^2 \to \mathbb{R}^2$, $f(x,y) = \left(\frac{1}{x} \frac{1}{y}, e^{-x^2}y\right)$, a = (1, -1).

Exercice 12. Gradient et composée

Soit $f: \mathbb{R}^3 \to \mathbb{R}$ différentiable telle que $\nabla_{(1,1,1)} f = \begin{pmatrix} 5 \\ 2 \\ 1 \end{pmatrix}$ et soit $\varphi: \mathbb{R}^* \to \mathbb{R}^3$ définie pour tout $t \neq 0$ par

$$\varphi(t) = \left(t^2, \frac{1}{t^3}, t\right).$$

- 1. Déterminer $D_{(1,1,1)}f(h)$ pour tout $h \in \mathbb{R}^3$.
- 2. En déduire $(f \circ \varphi)'(1)$.

Exercice 13. Dérivation le long d'un arc

Soit $f: \mathbb{R}^n \to \mathbb{R}$ une application différentiable, I un intervalle ouvert de \mathbb{R} , $\varphi: I \to \mathbb{R}^n$, $t \mapsto (x_1(t), ..., x_n(t))$ un arc paramétré dérivable et $\mathcal{C} = \varphi(I)$ la courbe géométrique associée.

- 1. Montrer que, pour tout $t_0 \in I$, $(f \circ \varphi)'(t_0) = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(\varphi(t_0))x_i'(t_0)$.
- 2. Soit $\varphi(t_0) \in \mathbb{R}^n$ un point singulier de \mathcal{C} . Calculez $(f \circ \varphi)'(t_0)$.
- 3. Si $n=2, \varphi: \mathbb{R} \to \mathbb{R}^2, t \mapsto (at+b, ct+d)$ où $(a,b,c,d) \in \mathbb{R}^4$. Montrer que, pour tout $t_0 \in \mathbb{R}$,

$$(f \circ \varphi)'(t_0) = \frac{\partial f}{\partial v}(\varphi(t_0)), \quad v = (a, c).$$

Dans ce cas, quelle est la nature de \mathcal{C} ? Comment appelle-t-on v pour la courbe \mathcal{C} ?

- 4. Soit n=2. On suppose que \mathcal{C} est une courbe régulière paramétrée par φ de telle sorte que $\|\varphi'(t)\|_2 = 1$ pour tout $t \in I$. Montrer que, pour tout $t \in I$, $(f \circ \varphi)'(t)$ est la dérivée de f en $\varphi(t)$ le long du vecteur tangent unitaire à \mathcal{C} en ce point. Que vaut cette quantité si $\|\varphi'(t)\|_2$ ne vaut pas toujours 1?
- 5. Application : soit $\varphi:]0, 2\pi[\to \mathbb{R}^2, t \mapsto (\cos t, \sin t), \text{ et } f: \mathbb{R}^2 \to \mathbb{R}$ définie par $f(x,y) = e^{-x^2-y^2}$. Déterminer la dérivée de f en $(1/2, \sqrt{3}/2)$ le long du vecteur tangent unitaire à $\mathcal{C} = \varphi(]0, 2\pi[)$ en ce point.

Exercice 14. Plan tangent et approximation linéaire

On considère la fonction $f: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$ définie par

$$\forall (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}, \quad f(x,y) = \ln(4x^2 + y^2).$$

Cette fonction définie la surface $S = \{(x, y, z) \in \mathbb{R}^2 \setminus \{(0, 0)\} \times \mathbb{R} : z = f(x, y)\}.$

- 1. Justifier que f est différentiable.
- 2. Déterminer sans machine une valeur approchée de f(0.1, 0.2).
- 3. Déterminer l'équation du plan tangent à S au point $(1, 2, \ln(8))$.
- 4. Trouver un point $P \in S$ tel que le plan tangent à S au point P soit parallèle au plan d'équation 2x + 2y z = 3.

Exercices supplémentaires (applications directes, en autonomie)

Exercice 15. Calculs de différentielles

Déterminer la différentielle de chacune des applications suivantes sur leur domaine de définition :

- 1. $f: \mathbb{R}^2 \to \mathbb{R}^3$, $f(x,y) = (x^2, y^2x^3, x + 3y)$
- 2. $f: \mathbb{R} \to \mathbb{R}^4$, $f(x) = (x^2, \cos(x), \arctan(x^5), \sinh(x^2 1))$.

Exercice 16. Contre-exemple

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ la fonction définie par

$$f(x) = \begin{cases} \frac{x^2y}{x^4 + y^2} & \text{si } (x, y) \neq (0, 0) \\ 0 & \text{si } (x, y) = (0, 0) \end{cases}$$

- 1. Montrer que f admet des dérivées partielles en (0,0).
- 2. La fonction f est-elle différentiable en (0,0)?

Exercice 17. Calculs de matrices jacobiennes, de différentielles et de jacobiens

Déterminer la matrice jacobienne, la différentielle et le jacobien (quand il existe) des applications f suivantes au point a donné.

- 1. $f: \mathbb{R}^3 \to \mathbb{R}^4$, $f(x, y, z) = (x y, z + y, y^2 x^3, -z^4 y^2)$, a = (-2, 0, 1).
- 2. $f: \mathbb{R}^3 \to \mathbb{R}^3$, $f(x, y, z) = (\sin(x), -z\cos(y), x + y + z)$, $a = (\pi, 0, 0)$.
- 3. $f: \mathbb{R}^3 \to \mathbb{R}^3$, $f(r, \theta, \phi) = (r \cos \theta \cos \phi, r \sin \theta \cos \phi, r \sin \phi)$, $x_0 = (r, \theta, \phi)$.