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Feuille 3 : Limites et fonctions continues

Exercice 1. Domaine de définition de fonctions
Déterminer le domaine de définition des fonctions suivantes et en donner une allure dans un plan ou dans
l’espace :

1. f(x, y) =
ln(x2 + y2 − 1)

xex+y

2. g(x, y, z) =

√
z

x− y

Correction.
1. Comme, pour tout (x, y) ∈ R2, ex+y > 0, l’ensemble de définition de f est

Df := {(x, y) ∈ R2 : x2 + y2 > 1, x ̸= 0},

c’est-à-dire sur l’ensemble de tous les points du plan strictement extérieur au disque de centre
(0, 0) et de rayon 1, privé de l’axe des ordonnées.

2. La quantité g(x, y, z) existe si et seulement si z ≥ 0 et x− y ̸= 0, donc l’ensemble de définition de
g est

Dg := {(x, y, z) ∈ R3 : x ̸= y et z ≥ 0},

c’est-à-dire tous les points du plan de cote positive n’appartenant pas au plan d’équation x = y.

Exercice 2. Lignes de niveau
Soit k ∈ R, f : D → R une fonction de deux variables définie sur un ensemble D ⊂ R2. On appelle ligne
de niveau k de la fonction f sur D l’ensemble

Lk = {(x, y) ∈ D : f(x, y) = k}.

Pour chacune des fonctions suivantes, déterminer son ensemble de définition D ainsi que les lignes de
niveaux Lk pour les valeurs de k données :

1. f(x, y) =
√
x2 + y2, k ∈ {−1, 0, 2}.

2. f(x, y) =
y

x
, k ∈ {−1, 0}.

3. f(x, y) =
x2 + y

x+ y2
, k = −1.

Correction.
1. Pour k = −1, il est clair que L−1 = ∅ puisque pour tout (x, y) ∈ R2,

√
x2 + y2 ≥ 0.

Pour k = 0, on a, pour tout (x, y) ∈ R2,

f(x, y) = 0 ⇐⇒ ∥(x, y)∥2 = 0 ⇐⇒ x = y = 0.

Donc L0 = {(0, 0)}.
Enfin, pour k = 2, on a, pour tout (x, y) ∈ R2,

f(x, y) = 2 ⇐⇒ x2 + y2 = 4,

et L2 est donc le cercle centré en 0 et de rayon 2.



2. On commence à remarquer que Df = {(x, y) ∈ R2 : x ̸= 0}. Pour k = −1, on a, pour tout
(x, y) ∈ Df ,

f(x, y) = −1 ⇐⇒ y

x
= −1 ⇐⇒ y = −x.

Ainsi, L−1 est l’ensemble des points de la droite y = −x privé de l’origine (0, 0) (quand x = 0).
Pour k = 0, on a, pour tout (x, y) ∈ Df ,

f(x, y) = 0 ⇐⇒ y

x
= 0 ⇐⇒ y = 0.

L’ensemble L0 est donc l’axe des abscisses privé du point (0, 0) (quand x = 0).
3. On commence par remarquer que Df = {(x, y) ∈ R2 : x ̸= −y2}. Pour k = −1, on a, pour tout

(x, y) ∈ Df ,

f(x, y) = −1 ⇐⇒ x2 + y

x+ y2
= −1 ⇐⇒ x2 + x+ y2 + y = 0 ⇐⇒ (x+ 1/2)2 + (y + 1/2)2 = 1/2.

L’ensemble L−1 est donc l’ensemble des point du cercle centré en (−1/2,−1/2) et de rayon 1√
2

privé des points (x, y) ∈ R2 vérifiant

x2 + x+ y2 + y = 0, et x = −y2.

En substituant, on obtient donc que l’on doit nécessairement avoir y4−y2+y2+y = 0 c’est-à-dire
y4 + y = 0, donc y(y3 +1) = 0 d’où y = 0 et y3 = −1, ce qui veut dire que y = −1. Si y = 0, alors
x = −02 = 0 et si y = −1, x = −(−1)2 = −1.
Au final, cette ligne de niveau est l’ensemble des points du cercle centré en (−1/2,−1/2) et de
rayon 1√

2
privé des points (0, 0) et (−1,−1).

Exercice 3. Preuve fausse à corriger
Déterminer toutes les erreurs commises dans la preuve ci-dessous et la corriger.

Soit f : R2\{(0, 0)} → R définie pour tout (x, y) ̸= (0, 0) par f(x, y) =
sin(x2)− sin(y2)

x2 + y2
.

Montrons que lim
(x,y)→(0,0)

f(x, y) = 0. En effet, on a, pour tout x ∈ R, f(x, x) = 0, et comme (x, x) → (0, 0)

quand x → 0, on a bien que lim
(x,y)→(0,0)

f(x, y) = 0.

Correction. Les erreurs sont les suivantes :
1. Pour calculer la limite, comme (x, y) ̸= (0, 0), il faudrait calculer f(x, x) pour x ∈ R∗ (et non pas

R).
2. Même s’il est vrai que lim

(x,x)→(0,0)
f(x, x) = 0, on ne peut PAS en déduire que lim

(x,y)→(0,0)
f(x, y) = 0 !

Cette limite existe si on obtient la même valeur en tendant vers (0, 0) de toutes les façons possibles.
Ainsi, on peut montrer que f n’admet pas de limite en (0, 0). En effet, on a, pour tout x ̸= 0,

f(x, 0) =
sin(x2)

x2
→ 1

quand x → 0, en utilisant le fait que lim
t→0

sin(t)

t
= 1. Ainsi, f tend vers 0 sur la diagonale {(x, y) ∈ R2 :

x = y} et vers 1 sur l’axe des abscisses {(x, 0) ∈ R2 : x ∈ R} quand (x, y) → (0, 0), et n’a donc pas de
limite au point (0, 0).
Alternativement : On peut aussi calculer, pour tout y ̸= 0,

f(0, y) = − sin(y2)

y2
→ −1

quand y → 0, pour la même raison que précédemment, ce qui donne encore une autre limite différente
des deux autres calculées plus haut, le long de l’axe des ordonnées cette fois-ci.



Exercice 4. Quelques limites
A. Expliquer pourquoi la recherche de la limite d’une fonction f : E ⊂ Rn → Rp en a ∈ E est équivalente
à la recherche de la limite d’une certaine fonction (à expliciter) en (0, ..., 0) ∈ Rn.
B. Déterminer la limite des fonctions suivantes en (0, 0) :

1. f(x, y) =
xk − yk

x2 + y2
, pour k = 2, puis k = 3.

2. f(x, y) = xe
x
y .

3. f(x, y) =

(
x2 + y2 − 1

x
sin(x),

sin(x2) + sin(y2)√
x2 + y2

)
.

4. f(x, y) =
xαyβ

x2 + y2
, (α, β) ∈ (N∗)2.

On discutera l’existence de la limite en fonction des valeurs de (α, β).

5. f(x, y) =
xy2

x+ y
.

Indication : On pourra choisir x en fonction de y de manière à obtenir f(x, y) = yβ − yα avec
α, β ∈ R.

1. Pour k = 2, la limite n’existe pas. En effet, on a

∀x ∈ R∗, f(x, 0) =
x2

x2
= 1,

∀y ∈ R∗, f(0, y) =
−y2

y2
= −1.

On a donc lim
x→0
x̸=0

f(x, 0) = 1 ̸= −1 = lim
y→0
y ̸=0

f(0, y).

Pour k = 3, on majore de la façon suivante, pour tout (x, y) ̸= (0, 0),

|f(x, y)| =
∣∣∣∣x3 − y3

x2 + y2

∣∣∣∣ ≤ |x|3 + |y|3

x2 + y2
≤ 2

√
x2 + y2

3

x2 + y2
= 2
√
x2 + y2 → 0

quand (x, y) → (0, 0). Donc, par comparaison lim(x,y)→(0,0) f(x, y) = 0.
2. La limite n’existe pas. En effet, on a

∀x ∈ R∗, f(x, x) = ex et f(x, x2) = xe
1
x .

Ainsi, lim
x→0

f(x, x) = 0 et lim
x→0+

f(x, x2) = lim
X→+∞

eX

X
= +∞ (par croissances comparées après

avoir posé X = 1/x).

3. On note f = (f1, f2). Pour f1, on sait que lim(x,y)→(0,0) x
2+y2−1 = −1 et que limx→0

sin(x)
x = 1,

ce qui implique que lim
(x,y)→(0,0)

f1(x, y) = −1.

Pour f2, on a, pour tout x ̸= 0 et tout y ̸= 0,

|f2(x, y)| ≤
| sin(x2)|√
x2 + y2

+
| sin(y2)|√
x2 + y2

=
| sin(x2)|

x2
× x2√

x2 + y2
+

| sin(y2)|
x2

× y2√
x2 + y2

≤ | sin(x2)|
x2

× x2 + y2√
x2 + y2

+
| sin(y2)|

x2
× y2 + x2√

x2 + y2

≤ | sin(x2)|
x2

√
x2 + y2 +

| sin(y2)|
y2

√
x2 + y2.

Comme limz→0
sin(z2)

z2 = 1 et que lim
(x,y)→0

√
x2 + y2, on obtient que lim

(x,y)→(0,0)
f2(x, y) = 0 le long

de toute courbe telle que x ̸= 0 et y ̸= 0. Si x = 0, alors

∀y ̸= 0, f(0, y) =
sin(y2)

|y|
=

sin(y2)

y2
|y| → 0



quand y → 0. Symétriquement, si y = 0, on trouve aussi que f(x, 0) → 0 quand x → 0 et on a
donc montré que lim

(x,y)→(0,0)
f2(x, y) = 0.

Ainsi, on a montré que
lim

(x,y)→(0,0)
f(x, y) = (−1, 0).

4. Deux méthodes différentes sont possibles.
Méthode 1 : en coordonnées polaires. On passe en coordonnées polaires. Soit r > 0 et θ ∈ [0, 2π[,
alors on a

f(r cos θ, r sin θ) =
rα cosα θrβ sinβ θ

r2
= rα+β−2 cosα θ sinβ θ.

Si α+ β > 2, alors on a |f(r cos θ, r sin θ)| ≤ rα+β−2 → 0 quand r → 0, et donc, par comparaison,
lim

(x,y)→(0,0)
f(x, y) = 0.

Si α + β = 0, alors on a f(r cos θ, r sin θ) = cosα θ sinβ θ qui est non-constant par rapport à θ,

valant 0 si θ = 0 et
(√

2
2

)α+β

̸= 0 si θ = π
4 , et donc f n’a pas de limite en (0, 0).

Si α + β < 2, alors on a f(r cos θ, r sin θ) =
cosα θ sinβ θ

r2−α−β
et donc lim

r→0
f(r cos θ, r sin θ) vaut 0 si

θ = 0 et +∞ si θ = π
4 , et ainsi f n’a pas de limite en (0, 0).

Méthode 2 : en coordonnées cartésiennes. Pour tout (x, y) ̸= (0, 0),

|f(x, y)| = |x|α|y|β

x2 + y2
≤ (x2 + y2)

α
2 (x2 + y2)

β
2

x2 + y2
= (x2 + y2)

α+β
2 −1.

Ainsi, si α+β
2 − 1 > 0, c’est-à-dire α + β > 2, on a lim

(x,y)→(0,0)
(x2 + y2)

α+β
2 −1 = 0 et donc, par

comparaison, lim
(x,y)→(0,0)

f(x, y) = 0.

Si α+ β ≤ 2, alors

∀x ̸= 0, f(x, 0) = 0 et f(x, x) =
1

2x2−α−β
.

Comme (x, x) → (0, 0) quand x → 0, et lim
x→0

f(x, x) ̸= 0, puisqu’elle vaut soit 1/2 (si α+ β = 2),

soit +∞ (si α+ β < 2 et x → 0+) on en déduit que f n’a pas de limite en (0, 0)

5. Soit α ∈ R∗, alors

f(yα − y, y) =
(yα − y)y2

yα − y + y
=

yα+2 − y3

yα
= y2 − y3−α.

Comme α est arbitraire, on peut le choisir :
• tel que 3− α > 0, et dans ce cas limy→0 f(y

α − y, y) = 0 ;
• tel que 3− α < 0, et dans ce cas limy→0+ f(yα − y, y) = −∞.

Ainsi, la limite de f en (0, 0) n’existe pas.

Exercice 5. Continuité
Etudier la continuité sur R2 des fonctions suivantes :

1. f(x, y) =


x2 + y2√

x2 + y2 + 1− 1
si (x, y) ̸= (0, 0)

2 si (x, y) = (0, 0)

2. f(x, y) =


3x2 + xy√
x2 + y2

si (x, y) ̸= (0, 0)

0 si (x, y) = (0, 0)

3. f(x, y) =


exy − 1

x2 + y2
si (x, y) ̸= (0, 0)

1 si (x, y) = (0, 0)



4. f(x, y) =

{
xy ln(x2 + y2) si (x, y) ̸= (0, 0)
0 si (x, y) = (0, 0)

5. f(x, y) =

{
2x2 + y2 − 1 si x2 + y2 > 1
x2 si x2 + y2 ≤ 1

Correction.
1. Sur R2\{(0, 0)}, f est continue comme quotient de fonctions continues dont le numérateur ne

s’annule jamais car, pour tout (x, y) ∈ R2,√
x2 + y2 + 1− 1 = 0 ⇐⇒ x2 + y2 = 0 ⇐⇒ (x, y) = (0, 0).

Etudions la continuité en (0, 0). Pour cela, on utilise les coordonnées polaires x = r cos θ, y =
r sin θ, r > 0, θ ∈ [0, 2π[ et on trouve, quand r → 0,

f(r cos θ, r sin θ) =
r2√

r2 + 1− 1
=

r2

1 + r2

2 + o(r2)− 1
→ 2

On a donc lim
(x,y)→(0,0)

f(x, y) = 2 = f(0, 0), et ainsi f est continue en (0, 0), et donc f est continue

sur R2.
2. Sur R2\{(0, 0)}, f est continue comme quotient de fonctions continues dont le numérateur ne

s’annule jamais car, pour tout (x, y) ∈ R2,

x2 + y2 = 0 ⇐⇒ (x, y) = (0, 0).

Etudions la continuité en (0, 0). L’inégalité 2|xy| ≤ x2 + y2 est évidente pour tout (x, y) ∈ R2 car
découlant du fait que (|x| − |y|)2 ≥ 0. Elle s’écrit aussi

∀(x, y) ∈ R2, |xy| ≤ ∥(x, y)∥22
2

.

On rappelle que l’on a aussi, pour tout (x, y) ∈ R2, x2 ≤ x2 + y2 = ∥(x, y)∥22. On obtient donc,
pour tout (x, y) ̸= (0, 0),

|f(x, y)| = |3x2 + xy|√
x2 + y2

≤ 3x2 + |xy|√
x2 + y2

≤
3∥(x, y)∥22 + 1

2∥(x, y)∥
2
2

∥(x, y)∥2
= 3∥(x, y)∥2+

1

2
∥(x, y)∥2 ≤ 4∥(x, y)∥2.

Comme la limite de ∥(x, y)∥2 en (0, 0) est 0, on en déduit que lim(x,y)→(0,0) f(x, y) = f(0, 0) = 0
et donc f est continue en (0, 0), ce qui implique que f est continue sur R2.
Alternativement : en coordonnées polaires, soit r > 0 et θ ∈ [0, 2π[, alors

|f(r cos θ, r sin θ)| = |3r2 cos2 θ + r2 cos θ sin θ|
r

= |3r cos2 θ + r cos θ sin θ| ≤ 4r → 0

quand r → 0, donc, par comparaison, lim(x,y)→(0,0) f(x, y) = 0 = f(0, 0) d’où la continuité en
(0, 0).

3. Sur R2\{(0, 0)}, f est continue comme quotient de fonctions continues dont le numérateur ne
s’annule jamais.
Etudions la continuité en (0, 0). Pour tout x ̸= 0, on a

f(x, x) =
ex

2 − 1

2x2
, et f(−x, x) =

e−x2 − 1

2x2
.

On sait que quand t → 0, on a et = 1 + t+ o(t), et on trouve donc

lim
x→0

f(x, x) =
1

2
, et lim

x→0
f(−x, x) = −1

2
,

ce qui prouve que f n’admet pas de limite en (0, 0) et donc f n’est pas continue en (0, 0).



4. Sur R2\{(0, 0)}, f est continue comme produit et composée de fonctions continues car, pour tout
(x, y) ∈ R2,

x2 + y2 ≤ 0 ⇐⇒ x2 + y2 = 0 ⇐⇒ (x, y) = (0, 0).

Etudions la continuité en (0, 0). On utilise encore le fait que, pour tout (x, y) ∈ R2, |x| ≤ ∥(x, y)∥2
et |y| ≤ ∥(x, y)∥2. On trouve ainsi, pour tout (x, y) ̸= (0, 0),

|f(x, y)| ≤ |xy|| ln(∥(x, y)∥22) = ∥(x, y)∥2 ln(∥(x, y)∥22)

Comme lim
X→0+

X lnX = 0, on trouve que f(x, y) tend vers 0 = f(0, 0) quand (x, y) → (0, 0), ce

qui prouve que f est continue en (0, 0), et donc sur R2.
5. Sur B(0, 1), f est continue car c’est un polynôme en les variables x et y. Sur B(0, 1)c, f est aussi

continue pour la même raison.
Soit (x0, y0) tel que x2

0 + y20 = 1. Montrons que f est continue en (x0, y0). Soit {(xk, yk)}k une
suite qui converge vers (x0, y0). Soit k ∈ N, alors :
• Si (xk, yk) ∈ B(0, 1), alors f(xk, yk) = x2

k et f(xk, yk) → x2
0 = f(x0, y0) quand k → +∞.

• Si (xk, yk) ∈ B(0, 1)c, alors f(xk, yk) = 2x2
k + y2k − 1 → 2x2

0+ y20 − 1 = 2x2
0+1−x2

0− 1 = x2
0 =

f(x0, y0).
Ainsi, il est clair que la fonction f est continue en (x0, y0), et donc continue sur R2.

Exercice 6. Fonction sur un cercle
Soit C le cercle unité de R2 et f : C → R une fonction continue. Montrer qu’il existe x0 ∈ C tel que
f(−x0) = f(x0).
Indication : On considérera la fonction g : [0, 2π] → R, t 7→ g(t) = f(cos t, sin t)− f(− cos t,− sin t).
Correction. La fonction g est continue comme composée de fonctions continues car f , t 7→ (cos t, sin t)
et t 7→ (− cos t,− sin t) sont continues. On remarque que

g(0) = f(1, 0)− f(−1, 0) et g(π) = f(−1, 0)− f(1, 0) = −g(0).

Ainsi, g(0) et g(π) sont de signes opposés, et comme g est continue, par le théorème des valeurs inter-
médiaires, il existe t0 ∈ [0, π] tel que g(t0) = 0, ce qui veut dire que, pour x0 = (cos t0, sin t0), on a
f(−x0) = f(x0).

Exercice 7. Fonctions höldériennes et continuité uniforme
Soit α > 0 et E ⊂ Rn. On dit que F : E → Rp est α-höldérienne s’il existe une constante C > 0 telle
que pour tout (x, y) ∈ E2, ∥F (x)− F (y)∥2 ≤ C∥x− y∥α2 .

1. Montrer que, pour tout α > 0, toute fonction α-höldérienne est uniformément continue.
2. En déduire que la fonction g : R+ → R+, x 7→

√
x est uniformément continue.

3. Montrer que si F : E → R et G : E → R sont bornées et α-höldériennes, alors FG : E → R est
bornée et α-höldérienne.
Indication : ∀(x, y) ∈ E2, F (x)G(x)− F (y)G(y) = F (x)(G(x)−G(y)) +G(y)(F (x)− F (y)).

Correction.
1. Soit α > 0 et F une fonction α-höldérienne. Soit ε > 0, alors il existe δ =

(
ε
C

) 1
α de telle sorte que

∀(x, y) ∈ E2, ∥x− y∥2 < δ =⇒ ∥F (x)− F (y)∥2 ≤ C∥x− y∥α2 < Cδα = ε,

donc F est bien uniformément continue.
2. Soit x ≥ 0 et y ≥ 0 tels que 0 ≤ x ≤ y, alors on a, en appliquant g et en multipliant par

√
x,

x ≤
√
x
√
y, ce qui nous donne −2

√
x
√
y ≤ −2x, puis, en ajoutant x+ y, on finit par obtenir

x+ y − 2
√
x
√
y = (

√
x−√

y)2 ≤ x+ y − 2x = y − x = |x− y|.

L’inégalité (
√
x − √

y)2 ≤ |x − y| restant la même en échangeant les rôles de x et y, on a donc
obtenu :

∀x ≥ 0,∀y ≥ 0, |
√
x−√

y| ≤ |x− y| 12 ,
donc g est 1/2-höldérienne, donc uniformément continue d’après la question précédente.



3. Soient F et G bornées et α-höldérienne, alors on a, comme F et G sont bornées,

∃M > 0,∃N > 0,∀x ∈ E, |F (x)| ≤ M, |G(x)| ≤ N,

et ainsi
∀x ∈ E, |F (x)G(x)| ≤ MN.

On en déduit donc que FG est bornée. De plus, on a, pour tout (x, y) ∈ E2,

|F (x)G(x)− F (y)G(y)| = |F (x)(G(x)−G(y)) +G(y)(F (x)− F (y))|
≤ |F (x)||G(x)−G(y)|+ |G(y)||F (x)− F (y)|
≤ MC1∥x− y∥α2 +NC2∥x− y∥α2
≤ (MC1 +NC2)∥x− y∥α2

où on a noté M et C1 (resp. N et C2) le majorant de |F | (resp. de |G|) et la constante asso-
ciée à F (resp. G) dans la condition de Hölder. Comme toutes ces constantes sont strictement
positivesMC1 +NC2 > 0 et on a donc montré que FG est α-höldérienne.

Exercice 8. Application coercive et minimum global
Soit E ⊂ Rn un fermé non-borné et soit f : E → R continue telle que lim

∥x∥2→+∞
f(x) = +∞. Montrer que

f admet un minimum global sur E, c’est-à-dire qu’il existe x0 ∈ E tel que pour tout x ∈ E, f(x) ≥ f(x0).
Correction. Soit a ∈ E. On sait qu’il existe R > 0 tel que

∀x ∈ E, ∥x∥2 > R ⇒ f(x) > f(a).

Par ailleurs, pour ce réel R, B(O,R) ∩ E est un fermé borné car E est fermé et B(O,R) est fermé et
borné, donc B(O,R)∩E est un compact non-vide. Ainsi, comme f est continue, f restreint au compact
B(O,R) ∩ E admet un minimum global en un certain x0, qui est donc atteint, d’après le théorème des
bornes atteintes de Weierstrass.

Exercice 9. Point fixe sur un compact
Soit K ⊂ Rn une partie compacte et f : K → K une fonction continue vérifiant

∀(x, y) ∈ K2, x ̸= y =⇒ ∥f(x)− f(y)∥2 < ∥x− y∥2.

1. Montrer que f admet une unique point fixe, c’est-à-dire : ∃!α ∈ K, f(α) = α.
Indication : pour montrer l’existence de α, considérer le minimum de la fonction g : K → R,
x 7→ ∥f(x)− x∥2 et raisonner par l’absurde.

2. Soit f : R → R définie par

f(x) =

{
1 si x ≤ 0
x+ 1

x+1 si x > 0,

Montrer que f n’admet pas de point fixe, et que donc le résultat précédent ne se généralise pas à
K fermé.

Correction.
1. Soit g : K → R, x 7→ ∥f(x)−x∥2. alors cette fonction est continue (comme composée de fonctions

continues) sur le compact K, elle y atteint donc son minimum g(α) en un point que l’on note
α ∈ K. Supposons que α ̸= f(α), c’est-à-dire que le minimum de g n’est pas 0. Alors on a

g(f(α)) = ∥f(f(α))− f(α)∥2 < ∥α− f(α)∥2 = g(α),

ce qui contredit la minimalité de g(α). On en déduit que α = f(α). Pour montrer l’unicité d’un
tel α, supposons qu’il existe aussi β ∈ K vérifiant la même prioriété, alors

∥β − α∥2 = ∥f(β)− f(α)∥2 < ∥β − α∥2,

ce qui est impossible.



2. On a que f est continue puisque :
• elle l’est sur R∗ car x 7→ 1 et x 7→ x+ 1

1+x sont continues ;
• en 0, on a limx→0− f(x) = 1 = limx→0+ f(x) = f(1),

mais elle n’admet aucun point fixe car, pour tout x ∈ R−,

x = f(x) ⇐⇒ 0 ≥ x = 1,

ce qui est impossible, et, pour tout x ∈ R+,

x = f(x) ⇐⇒ 1

1 + x
= 0,

ce qui est aussi impossible.
De plus, si (x, y) ∈ R2 tels que x ̸= y, alors on a trois cas :
(a) Si x ≤ 0 et y ≤ 0, alors

|f(x)− f(y)| = |1− 1| = 0 < |x− y|,

(b) si x ≤ 0 et y > 0, alors y > x et y
1+y > 0, donc

|f(x)− f(y)| =
∣∣∣∣1− y − 1

1 + y

∣∣∣∣ = y2

1 + y
= y − y

1 + y
< y ≤ y − x = |y − x|

(c) si x > 0 et y > 0, alors, comme
1

(1 + x)(1 + y)
< 1,

|f(x)−f(y)| =
∣∣∣∣x+

1

x+ 1
− y − 1

y + 1

∣∣∣∣ = ∣∣∣∣x− y +
y − x

(1 + x)(1 + y)

∣∣∣∣ = |x−y|
(
1− 1

(1 + x)(1 + y)

)
< |x−y|.

On a donc montré que pour tout (x, y) ∈ R2, x ̸= y ⇒ |f(x)−f(y)| < |x−y|, mais que f n’admet
pas de point fixe. Le résultat de cet exercice ne se généralise donc pas à tout fermé K (ici R est
fermé).


