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Feuille 3 : Limites et fonctions continues

Exercice 1. Domaine de définition de fonctions

Déterminer le domaine de définition des fonctions suivantes et en donner une allure dans un plan ou dans
I’espace :

In(z? + 9% - 1)

L fley) = ——=5
NES
2. g(z,y,2) =
r =y
Correction.

1. Comme, pour tout (z,y) € R%, e**¥ > 0, 'ensemble de définition de f est
Dy :={(z,y) e R*: 22 + 4% > 1,z # 0},

c’est-a-dire sur I’ensemble de tous les points du plan strictement extérieur au disque de centre
(0,0) et de rayon 1, privé de 'axe des ordonnées.

2. La quantité g(z,y, z) existe si et seulement si z > 0 et © —y # 0, donc 'ensemble de définition de
g est
Dy = {(z,y,2) ER*: x £y et z >0},

c’est-a-dire tous les points du plan de cote positive n’appartenant pas au plan d’équation x = y.
Exercice 2. Lignes de niveau

Soit k € R, f : D — R une fonction de deux variables définie sur un ensemble D C R2. On appelle ligne
de niveau k de la fonction f sur D I’ensemble

Ly = {(x?y) ED:f(x,y) :k}

Pour chacune des fonctions suivantes, déterminer son ensemble de définition D ainsi que les lignes de
niveaux Lj pour les valeurs de k données :

1. flz,y) = Va2 +y?% ke {-1,0,2}.
2.f@gw::%,ke{—L0}

_ 2ty

Ay
T+ y?

3. f(z,y)

Correction.

1. Pour k = —1, il est clair que L_; = () puisque pour tout (z,y) € R?, \/22 +y2 > 0.
Pour k = 0, on a, pour tout (z,y) € R?,

flxy) =0 = |,y =0 < 2=y =0.

Donc Ly = {(0,0)}.
Enfin, pour k = 2, on a, pour tout (z,y) € R?,

flay) =2 <= a® +y* =4,

et Lo est donc le cercle centré en 0 et de rayon 2.



2. On commence a remarquer que Dy = {(z,y) € R? :  # 0}. Pour k = —1, on a, pour tout

(z,y) € Dy,

flz,y) = -1 Yol = y=—zx.
x

Ainsi, L_; est Pensemble des points de la droite y = —x privé de l'origine (0,0) (quand = 0).
Pour k =0, on a, pour tout (z,y) € Dy,

flz,y) =0 — Y0 = y=0.
x
L’ensemble L est donc Paxe des abscisses privé du point (0,0) (quand x = 0).
3. On commence par remarquer que Dy = {(x,y) € R? : z # —y?}. Pour k = —1, on a, pour tout
(1'7 y) € va
z?+y
x +y?

fla,y) = -1 < =1 <= 2?+z2+y*+y=0 <= (z+1/2)*+(y+1/2)* =1/2.

L’ensemble L_; est donc ’ensemble des point du cercle centré en (—1/2,—1/2) et de rayon %

privé des points (z,y) € R? vérifiant
P4+ +y=0, et z=-—y%

En substituant, on obtient donc que I’on doit nécessairement avoir y* —y? 4+ y? 4y = 0 c’est-a-dire
y*+y=0,donc y(y>+1) =0dotty =0 et y> = —1, ce qui veut dire que y = —1. Si y = 0, alors
r=-0=0etsiy=—-1,0=—(-1)?2=—-1.
Au final, cette ligne de niveau est ’ensemble des points du cercle centré en (—1/2,—1/2) et de
rayon % privé des points (0,0) et (—1,—1).

Exercice 3. Preuve fausse a corriger
Déterminer toutes les erreurs commises dans la preuve ci-dessous et la corriger.

Soit f: R?\{(0,0)} — R définie pour tout (x,y) # (0,0) par f(z,y) = sin(2*) — sin(y”)

2 +y?
Montrons que( %IIH( )f(:c, y) = 0. En effet, on a, pour tout x € R, f(z,z) =0, et comme (x,2) — (0,0)
x,y)—(0,0
quand x — 0, on a bien que  lim  f(x,y) =0.

(2,y)—(0,0)
Correction. Les erreurs sont les suivantes :
1. Pour calculer la limite, comme (x,y) # (0,0), il faudrait calculer f(z,x) pour x € R* (et non pas
R).
2. Méme s’il est vraique  lim  f(z,2) = 0, on ne peut PAS en déduire que  lim  f(x,y) = 0!
(2,2)—(0,0) (z,9)—(0,0)
Cette limite existe si on obtient la méme valeur en tendant vers (0, 0) de toutes les fagons possibles.

Alinsi, on peut montrer que f n’admet pas de limite en (0,0). En effet, on a, pour tout x # 0,
sin(x?)

f(z,0) = a7 1

sin(t)

x =y} et vers 1 sur I'axe des abscisses {(z,0) € R? : z € R} quand (z,y) — (0,0), et n’a donc pas de
limite au point (0, 0).
Alternativement : On peut aussi calculer, pour tout y # 0,

= 1. Ainsi, f tend vers 0 sur la diagonale {(x,y) € R? :

quand z — 0, en utilisant le fait que tlirr(l)
—

)
o -y

quand y — 0, pour la méme raison que précédemment, ce qui donne encore une autre limite différente
des deux autres calculées plus haut, le long de 'axe des ordonnées cette fois-ci.



Exercice 4. Quelques limites

A. Expliquer pourquoi la recherche de la limite d’une fonction f : E C R® — RP en a € E est équivalente
a la recherche de la limite d’une certaine fonction (a expliciter) en (0, ...,0) € R™.

B. Déterminer la limite des fonctions suivantes en (0,0) :

1.

2.

il'k— k
f(x,y) = W, pour k= 2, puis k=3.
flw,y) = wev,

x? 2 sin(x? sin(y?
f<x,y>< L= sina), (%ijTyjy)).

€T *\2
flz,y) = 212 (o, B) € (N*)2.
On discutera Uezxistence de la limite en fonction des valeurs de («, 3).
2
Yy
fla,y) =

Sty
Indication : On pourra choisir x en fonction de y de maniére a obtenir f(x,y) = y® — y® avec
a,peR.

. Pour k = 2, la limite n’existe pas. En effet, on a

2
:%:17

X

,yz
Vy € R*, f(07y):?:*1-

Ve € R*,  f(x,0)

On a donc lim flz,0)=1#-1= lim £(0,y).
x— y—
z#0 y#0
Pour k = 3, on majore de la fagon suivante, pour tout (z,y) # (0,0),

23—y
22 + y?

3
2 4y _ 2/

=222 +y2 =0
24y © 2242 7ty

|f(z,y) =

quand (z,y) — (0,0). Donc, par comparaison lim, ,y_,(0,0) f(z,y) = 0.
La limite n’existe pas. En effet, on a

Ve e R*, f(z,x)=ex et f(x,xz):xe%.

X
Ainsi, lim f(z,2) = 0 et lim f(z,2°) = lim £ - +oo (par croissances comparées aprés
x—0 r—0+ X—+oco X

avoir posé X = 1/x).

On note f = (f1, f2). Pour f1, on sait que lim, ) (0,0) 22 4+y2—1=—1 et que limy_,o % =1,
ce qui implique que lim  fi(z,y) = -1

(x,y)—(0,0)
Pour f3, on a, pour tout x # 0 et tout y # 0,
sin(e?)| | JsinG?)| sG] e |swGd)| o

<
‘f?(xay” = \/1'2 +y2 \/2172 +y2 .T2 \/m + ‘%2 /CE2 +y2
- | sin(z?)] " 22 +y? n | sin(y?)| o y? + z?
- a? Va2 +y? z? Va?+y?
| sin(z?)] [ sin(y?)|
ST x2+y2+7y2 Var? +y2.

Comme lim,_, Sinz(fz) =1et que lim +/22+ 92, on obtient que  lim  fo(z,y) = 0 le long
(x,y)—0 (w,9)—(0,0)

de toute courbe telle que = # 0 et y # 0. Si z = 0, alors

£(0,9) = sin(y?) B sin(y?)

vl 92 Iyl =0

Vy # 0,



quand y — 0. Symétriquement, si y = 0, on trouve aussi que f(z,0) — 0 quand z — 0 et on a

donc montré que  lim  fa(z,y) = 0.
(z,y)—(0,0)

Ainsi, on a montré que
lim z,y) = (—1,0).
(z,y)—(0,0) fley)=( )
4. Deux méthodes différentes sont possibles.
Méthode 1 : en coordonnées polaires. On passe en coordonnées polaires. Soit > 0 et 6 € [0, 27|,
alors on a

7 cos® Orf sin” 6 _ kB2

f(rcosf,rsind) = cos™ @ sin” 6.

2
r
Sia+ B> 2, alors on a |f(rcos,rsinf)| < r*+#=2 — 0 quand r — 0, et donc, par comparaison,

lim z,y) = 0.
(w,y)ﬁ(o’o)f( v)

Si o+ f = 0, alors on a f(rcosf,rsinf) = cos®#sin” # qui est non-constant par rapport a 6,
a+p
valant 0 si 0 =0 et (?) #0si 0= 7, et donc f n’a pas de limite en (0,0).

cos® fsin” 0
2 aB
0 =0et +oosif =7, etainsi f n’a pas de limite en (0,0).

Méthode 2 : en coordonnées cartésiennes. Pour tout (z,y) # (0,0),

Sia+ 8 <2, alors on a f(rcosf,rsinf) = et donc liné f(rcosf,rsind) vaut 0 si
r—

a B
N e R G E

_ (2 pIE .|
|f(x7y)|_x2+y2§ .’I:2+y2 —(.’I; +y) 2
Ainsi, si 22 — 1 > 0, clest-a-dire a + 3 > 2, ona  lim (2 + 2)QTM_1 = 0 et donc, par
2 (@,5)—(0,0) Y
comparaison, lim  f(z,y) =0.
(z,9)—(0,0)

Sia+ B <2, alors
1
Comme (z,z) — (0,0) quand = — 0, et lir% f(z,z) # 0, puisqu’elle vaut soit 1/2 (si o + § = 2),
T—
soit +oo (si @+ B < 2 et 2 — 0F) on en déduit que f n’a pas de limite en (0,0)
5. Soit o € R*, alors

feY 2 a+t+2 _ 3

W —yy* y y o 3
@ _ = = = — Oé.
fW* —y,y) a—— " Yy -y

Comme « est arbitraire, on peut le choisir :

e tel que 3 —a > 0, et dans ce cas lim,_,o f(y* —y,y) =0;

e tel que 3 — a <0, et dans ce cas lim,_,o+ f(y* —y,y) = —ooc.
Ainsi, la limite de f en (0,0) n’existe pas.

Exercice 5. Continuité
Etudier la continuité sur R? des fonctions suivantes :

i i 0,0
Ly =) VErgeor e F00
2 si (x,y) = (0,0)
32 +ay
2 flay)={ VRt o (z,y) # (0,0)
0 si (z,y) = (0,0)
e —1
3. flay) =4 2y S @v) 70,0

1 si (z,y) = (0,0)



[ vl 4?) si () £ (0.0)
e ={ g SRR

202+ 92 —1 sia?+y?>1
5. f(l‘yy)—{mz Si$2+y2§1
Correction.

1. Sur R*\{(0,0)}, f est continue comme quotient de fonctions continues dont le numérateur ne
s’annule jamais car, pour tout (z,y) € R?,

V2412 41-1=0 < 22432 =0 < (z,y) = (0,0).
Etudions la continuité en (0,0). Pour cela, on utilise les coordonnées polaires @ = rcosf, y =
rsinf, r > 0,0 € [0, 27 et on trouve, quand r — 0,

7,.2 ,],.2

\/7‘2—|—1—1_1—|—§+0(r2)—1

f(rcosf,rsinf) = — 2

On a donc ( %im(0 0 flz,y) =2 = f(0,0), et ainsi f est continue en (0,0), et donc f est continue
z,y)—(0,
sur R2.

2. Sur R2\{(0,0)}, f est continue comme quotient de fonctions continues dont le numérateur ne
s’annule jamais car, pour tout (z,y) € R?,

22+’ =0 < (z,y) = (0,0).

Etudions la continuité en (0, 0). L’inégalité 2|zy| < 22 + y? est évidente pour tout (x,y) € R? car
découlant du fait que (|z| — |y[)? > 0. Elle s’écrit aussi

2
X,y
V(z,y) €R?, oyl < w

On rappelle que 'on a aussi, pour tout (z,y) € R?, 22 < 22 + 32 = ||(z,y)||2. On obtient donc,
pour tout (z,y) # (0,0),

[3a% 4 2y - 322 + |zy| - 3|, I3 + 51I(, v)lI3

1
- < < =3l (@) la+ 5 1 9)ll> < 4@ 3) 2
Ve S g [EOE 2

Comme la limite de [|(z,y)[|2 en (0,0) est 0, on en déduit que lim, 0,0y f(z,y) = f(0,0) =0
et donc f est continue en (0,0), ce qui implique que f est continue sur R?.
Alternativement : en coordonnées polaires, soit r > 0 et 0 € [0, 27|, alors

|f (@, )]

3r? cos? 0 + r? cos 0sin 0
|f(rcos@,rsinf)| = |37 cos” 6 + r” cos fsin b = |3rcos? O +rcosfsinf| < 4r — 0
r

quand r — 0, donc, par comparaison, lim, ) 0,0) f(z,y) = 0 = f(0,0) d’ou la continuité en
(0,0).

3. Sur R?\{(0,0)}, f est continue comme quotient de fonctions continues dont le numérateur ne
s’annule jamais.
Etudions la continuité en (0, 0). Pour tout « # 0, on a

e’ —1 e —1

flz,x) = o2 et f(—z,x)= 52

On sait que quand t — 0, on a ¢! =1+t + o(t), et on trouve donc

) 1 . 1
ilg%)f(x’x) =5 et :}g%f(—x,x) =-3

ce qui prouve que f n’admet pas de limite en (0,0) et donc f n’est pas continue en (0,0).



4. Sur R?\{(0,0)}, f est continue comme produit et composée de fonctions continues car, pour tout
(z,y) € R?,
249 <0 = 22 +y° =0 <= (x,9) = (0,0).

Etudions la continuité en (0, 0). On utilise encore le fait que, pour tout (z,y) € R?, |z| < ||(z, )2
et |y| < [[(z,y)|l2- On trouve ainsi, pour tout (x,y) # (0,0),

|f (@, 9)| < Jaylln(l|(z,9)[3) = [, »)]1* In(l (, y)II3)

Comme lim X InX = 0, on trouve que f(z,y) tend vers 0 = f(0,0) quand (z,y) — (0,0), ce

X—0+
qui prouve que f est continue en (0,0), et donc sur R2.
5. Sur B(0,1), f est continue car c’est un polynéme en les variables x et y. Sur B(0,1)¢, f est aussi

continue pour la méme raison.
Soit (o, y0) tel que 22 + y2 = 1. Montrons que f est continue en (g, o). Soit {(zx,yx)}x une
suite qui converge vers (zg, yo). Soit k € N, alors :

o Si (wk,yr) € B(0,1), alors f(zg,yx) = 27 et f(zr, yx) = 2§ = f(x0,y0) quand k — +00.

e Si (wg,yx) € B(0,1)¢, alors f(zg,yx) =225 +yi —1 =223 +ys —1 =22 +1—ad—1=2af =

f(@o,90)-

Ainsi, il est clair que la fonction f est continue en (zg, o), et donc continue sur R2.

Exercice 6. Fonction sur un cercle
Soit C le cercle unité de R? et f : C — R une fonction continue. Montrer qu’il existe zg € C tel que

f(=z0) = f(20).

Indication : On considérera la fonction g : [0,27] — R, t — g(t) = f(cost,sint) — f(—cost, —sint).
Correction. La fonction g est continue comme composée de fonctions continues car f, t — (cost,sint)
et t — (—cost, —sint) sont continues. On remarque que

9(0) = f(1,0) = f(=1,0) et g(m) = f(=1,0) = f(1,0) = —g(0).

Ainsi, g(0) et g(7) sont de signes opposés, et comme g est continue, par le théoréme des valeurs inter-
médiaires, il existe ¢ty € [0, 7] tel que g(t9) = 0, ce qui veut dire que, pour xzy = (costg,sinty), on a

f(=z0) = f(z0).

Exercice 7. Fonctions héldériennes et continuité uniforme
Soit a > 0 et £ C R™. On dit que F' : E — RP est a-hdldérienne s’il existe une constante C' > 0 telle
que pour tout (z,y) € B, [|[F(z) — F(y)|l2 < Cllz — yll5.

1. Montrer que, pour tout o > 0, toute fonction a-hdldérienne est uniformément continue.

2. En déduire que la fonction g : Ry — Ry, x — /z est uniformément continue.

3. Montrer que si F': E — R et G: E — R sont bornées et a-hdldériennes, alors FG : E — R est
bornée et a-holdérienne.
Indication : ¥(z,y) € E?, F(x)G(x) — F(y)G(y) = F(2)(G(z) — G(y)) + G(y)(F(x) — F(y)).
Correction.

1
1. Soit o > 0 et F une fonction a-hdldérienne. Soit & > 0, alors il existe § = (&) de telle sorte que

V(,y) € B2, |z —yl2 <= |F(z) = F(y)ll2 < Cllz - ylls < C3* =¢,

donc F' est bien uniformément continue.

2. Soit > 0 et y > 0 tels que 0 < = < y, alors on a, en appliquant g et en multipliant par /z,
x < \/x\/y, ce qui nous donne —2\/:5\/5 < —2x, puis, en ajoutant x + y, on finit par obtenir
Tty -2 y=Wr- V) <aty-2w=y-z=|r—y|

L’inégalité (\/z — \/ﬂ)z < |x — y| restant la méme en échangeant les roles de = et y, on a donc
obtenu :

Vo >0,y >0, |Va— gl <lz—yl2,

donc g est 1/2-holdérienne, donc uniformément continue d’aprés la question précédente.



3. Soient F' et GG bornées et a-héldérienne, alors on a, comme F' et GG sont bornées,
M > 0,3N > 0,Vz € E,|F(z)| < M,|G(z)| < N,

et ainsi

Vo € E,|F(z)G(x)] < MN.
On en déduit donc que F'G est bornée. De plus, on a, pour tout (z,y) € E?,

|[F(z)G(z) — F(y)G(y)| = |[F(2)(G(z) — G(y)) + G(y)(F(z) — F(y))|
< |F(2)||G(z) = G(y)| + |GW)|[F(z) — F(y)]
< MCillz —y||3 + NCollz — y[|3
< (MCy + NCy)l|lz —y|s

ot on a noté M et Cy (resp. N et Cs) le majorant de |F| (resp. de |G]) et la constante asso-
ciée & F (resp. G) dans la condition de Holder. Comme toutes ces constantes sont strictement
positivesM Cy + NC5 > 0 et on a donc montré que F'G est a-holdérienne.

Exercice 8. Application coercive et minimum global

Soit £ C R™ un fermé non-borné et soit f : £ — R continue telle que | Hlim f(x) = 400. Montrer que
z||a =400

f admet un minimum global sur E, c¢’est-a-dire qu’il existe o € F tel que pour tout x € E, f(x) > f(xo).
Correction. Soit a € E. On sait qu’il existe R > 0 tel que

Ve € E, |z]l2 > R= f(x)> f(a).

Par ailleurs, pour ce réel R, B(O,R) N E est un fermé borné car E est fermé et B(O, R) est fermé et
borné, donc B(O, R) N E est un compact non-vide. Ainsi, comme f est continue, f restreint au compact
B(O, R) N E admet un minimum global en un certain zg, qui est donc atteint, d’aprés le théoréme des
bornes atteintes de Weierstrass.

Exercice 9. Point fixe sur un compact
Soit K C R™ une partie compacte et f : K — K une fonction continue vérifiant

V(e,y) € K2, o #y=|f(2) = fW)l2 < llz = y]2.

1. Montrer que f admet une unique point fixe, c’est-a-dire : Il € K, f(a) = .
Indication : pour montrer 'existence de «, considérer le minimum de la fonction g : K — R,
x> ||f(x) — |2 et raisonner par ’absurde.

2. Soit f: R — R définie par

1 siz <0
f(x)—{ az—l—%ﬂ six >0,
Montrer que f n’admet pas de point fixe, et que donc le résultat précédent ne se généralise pas a
K fermé.
Correction.

1. Soit g : K — R, x — || f(x) — z||2. alors cette fonction est continue (comme composée de fonctions
continues) sur le compact K, elle y atteint donc son minimum ¢(«) en un point que l'on note
«a € K. Supposons que « # f(«), c’est-a-dire que le minimum de g n’est pas 0. Alors on a

9(f(@)) = I (f()) = f(@)ll2 <[l = fla)lla = g(a),

ce qui contredit la minimalité de g(«). On en déduit que o = f(a). Pour montrer I'unicité d'un
tel «, supposons qu’il existe aussi 8 € K vérifiant la méme prioriété, alors

18 = alla = 1£(8) = fla)ll2 < I8 = all2,

ce qui est impossible.



2. On a que f est continue puisque :
e clle 'est sur R* car x — 1l et z — x + ﬁ sont continues;

e en 0, onalim, o f(r)=1=lim, o f(x)=f(L),
mais elle n’admet aucun point fixe car, pour tout z € R_,

x=f(z) <= 0>2x=1,

ce qui est impossible, et, pour tout x € R,

ce qui est aussi impossible.
De plus, si (z,7y) € R? tels que = # y, alors on a trois cas :
(a) Siz<0ety<O0, alors
[f(@) = fl=N-1=0<|z—yl

(b) sixSOety>0,alorsy>xetﬁ>0,donc

y2

1 y
[f(z) = f(y)] ’ Uk vyl B wrviet Al wruvi ly — x|

1

Ata)0+y

)

(¢) siz>0ety >0, alors, comme

1 1
c+1 YTy

y—

= o=+ | = e (- ) <

[f(@)=f(y)| = |=+

On a donc montré que pour tout (z,y) € R?,  # y = |f(x) — f(y)| < |r —y|, mais que f n’admet
pas de point fixe. Le résultat de cet exercice ne se généralise donc pas a tout fermé K (ici R est

fermé).



