6.6 Quelques exemples de calculs d’extrema
6.6.1 Extrema libres, sur 'espace tout entier
Soit f :R? — R définie par f(x,y) = x> + y° — 3xy. Cherchons les points critiques de f :

0 0
V(x,y) € R?, é(x,y)z?»xz—?)y, %(x,y):fiyz—?)x,
etdonc, V(x,y) € R?,

3x2-3y=0 x’=y
V(X,y)f:()@{gyz_gxzo @{yzzx

Ainsi, si (x, y) est un point critique, alors nécessairement x* = xetdonc x(x3—1) = 0, c’est-a-dire
que x =0 ou x = 1. Ainsi,

e six=0,alors0=yety*>=0,donc y=0;

esix=1,alorsl=yety>=1,doncy=1.

Les points critiques sont donc (0,0) et (1,1).
Cherchons maintenant la nature de ces points critiques en déterminant la hessienne de f. On
a, comme f € C2(R?), V(x, y) € R?

0’ f 0’ f 0’ f 0’ f
P ) = 6 ] P ) = 6 ) ) =
0x? (x,y) = bx 0y? (x,y) =6y 0x0y (x,y) 0yox

(x, _V) =-3.
On adonc

0 -3 6 -3
Hf(o,O)z(_3 0 ) et Hf(1,1)=(_3 o )

¢ On a donc, pour tout (h, k) € R?, D%O,O)f((h,k),(h,k)) = —6hk qui, pour tout € # 0, est
strictement positif pour (h, k) = (—¢, €) et strictement négatif pour (k, k) = (g, €). Ainsi (0, 0)
est un point selle.
Alternativement, le polynome caractéristique de H £(0,0) est

P(X)=X?*-9

qui admet 3 et —3 comme racine. Ainsi, les deux valeurs propres de la matrice sont de signe
opposé, donc (0,0) est un point selle de f .

On peut aussi calculer det(Hf(0,0)) = —9 < 0 et en déduire automatiquement que les deux
valeurs propres de cette matrice sont de signes opposés, et que l'on a donc bien un point
selle.

* Ona, V(h,k) € R?,
2 2 2, 72 k\* . 3k
Danf((h k), (h k) =6h"+6k“—6hk=6(h"+k”—hk)=6 h_E +T =0
et Dq 1) f((hKk),(hk)=0 < k=0eth= ’EC = 0, donc cette forme quadratique est bien

définie positive, ce qui veut dire que f admet au point (1, 1) un minimum local.
Alternativement, le polynome caractéristique de H¢(1,1) est

PX)=(X-6)%-9=(X-9)(X-3),
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donc les valeurs propres de la matrice sont9 > 0 et 3 > 0, ce qui prouve qu'elle est définie
positive et donc que f admet un minimum local stricten (1,1).
Sinon, on peut aussi calculer det(H¢(1,1)) = 27 > 0 ce qui implique que les valeurs propres
ont méme signe, puis Tr(H¢(1,1)) = 12 > 0 et donc que ces valeurs propres sont toutes deux
strictement positives, d'oti l'existence d'un minimum local strict en ce point.
Il ne s’agit pas d'un minimum global car, pour tout y € R,

Y’ 3y

) o 3,.3_ — 1 3 ===
xklpwf(x,y)_xgrpmx +y°-3xy xEIwa (1+x3 xz) 00

6.6.2 Extrema sur un compact

On souhaite trouver les extrema de f : K — R sur un compact K Comme on aK = K = K UK, il
faut étudier ces extrema sur :

1. K, l'intérieur de K, en utilisant les points critiques et la hessienne,

2. 0K, le bord de K, en écrivant explicitement ce que devient la fonction. Par exemple sin =2
etdK = {(x(1), y(t)) : t € I} est une courbe plane, alors on étudiera la fonction d’'une variable
réelle t — f(x(t), y(t)) sur I (variations si nécessaire, minima, maxima,).

Il suffira ensuite de conclure en fonction de ce que l'on aura trouvé sur ces deux ensembles (quel
est le plus petit (resp. grand) des minima (resp. maxima) locaux trouvés et en quels points sont-ils
atteints).

On considere la boule euclidienne unité fermée de R* K = B(0,1) c R? et f : K — R définie
par f(x,y) = x?> — y?. Cherchons les extrema de f sur K. Comme K est compact et f continue
comme somme de fonctions continues, alors f atteint ses bornes sur K d’apres le théoréme des
borners atteintes de Weierstrass.

¢ On cherche les extrema locaux parmi les points intérieurs a K, c’est-a-dire sur B(0, 1). Les
points critiques (x, y) de f surl’ouvert B(0, 1) vérifient

2x=0

et on trouve donc que (x,y) = (0,0) € B(0,1) est en fait 'unique point critique de f. La
hessienne de f est donnée par

2 0
Hf(o,O):( o o )

et donc les valeurs propres de f sont 2 et -2, de signes opposés, donc (0,0) est un point
selle de f. Comme f est continue sur le compact K (car c’est un fermé borné de R?), fy
admet un minimum et un maximum. Ceux-ci sont donc sur le bord de K.

e On étudie f sur K = 0B(0,1) = S(0,1). Pour cela, on remarque que

S=1{(x,y) eR*: x>+ y* =1} = {(cos t,sin 1) : t € [0,27]}.
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On a donc, pour tout ¢ € [0,27],
f(cost,sint) = cos? (1) — sin?(f) = cos(21).

Il ne reste plus qu’a étudier la fonction ¢ — cos(2¢) sur [0, 27] pour trouver les points pour
lesquels le maximum et le minimum est atteint.

Le maximum vaut naturellement 1 quand 2t = 0[27], c’est-a-dire quand ¢ = 0[x], ce qui
correspond aux points (1,0) et (—1,0).

Le minimum vaut -1 atteint quand 2 = 7[27], c’est-a-dire quand ¢ = 7[n], ce qui corres-
pond aux points (0, 1) et (0,—1).

6.6.3 Etude des points critiques “ala main"

On considere la fonction f : R?> — R définie par f(x, y) = 2x% — y* —3x2. Alors, pour tout (x, y) €
R?, on a
Vi f = (0,00 < (6x*—6x,-4y>) = (0,0) <> x€{0,1} ety =0,

et les points critiques de f sont (0,0) et (1,0). Dans ce cas, on obtient

6 0 6 0
Hf(o,O)z( 0 0) et Hf(1,0)=(0 0).

et on ne peut donc rien conclure. Il faut étudier f au voisinage de ces points.

* Auvoisinage de (0,0). On écrit, pour tout (x, y) € R?,
fx,y) =x*2x-3) -y

Pour tout x tel que |x| <1, ona2x—-3 <0 etdonc f(x,y) <0= f(0,0) pour tout y € R et
pour tout x € [—1,1]. Ainsi, f admet un maximum local en (0, 0).

¢ Au voisinage de (1,0). On remarque que, pour tout y € R (et en particulier dans un voisi-
nage de 0),
fa,y=-1-y*<-1=£(1,0).

Et, pour tout x tel que |[x — 1| = 1 (c’est-a-dire proche de 1), on a
f(x,0)=(x-1)?@x+1)-1=-1= f(1,0).
Ainsi, f admet un point selle en (1, 0).

Remarque : Pour déterminer dans quelle direction il faut étudier le signe de f au voisinage du
point critique xy dans le cas ou une valeur propre A est nulle, on cherche un vecteur propre u
associé a cette valeur propre et on étudie le signe de f(xy+ tu) quand ¢ € R est assez petit. Dans
le deuxieme cas précédent, il est clair que (0, 1) est un vecteur propre associé a la valeur propre
0, alors que (1,0) est lui un vecteur propre associé a la valeur propre 6 > 0. Dans cette derniere
direction, il était clair que nous allions trouver un minimum local, ce qui n’était pas clair pour
la valeur propre nulle.
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6.6.4 Quand la hessienne est nulle (juste mentionné en CM)

Soit f: R?> — R, (x,y) — x3+ y* - yx?> — xy?. On peut montrer que (0,0) est un point critique de f
mais que H¢(0,0) est la matrice nulle. Dans ce cas, soit on étudie localement la fonction comme
précédemment, soit on développe f au voisinage de (0,0) al'ordre 3, ce qui donne (Exercice)

f(h, k) = h(h? — hk— k%) + o(ll(h, k) |3)

et puisque ¢ (h, k) = h(h? — hk — k) a pour valeur, pour tout € > 0, ¢(¢,0) = €3 > 0 et ¢(—¢,0) =
—£3 <0, on en déduit & cause du changement de signe que (0,0) est un point selle de f.

6.6.5 Pavé de volume fixé et d’aire minimal (non-traité en CM)

On souhaite construire une boite de volume fixée avec le moins de matiére possible (surface
minimale).
On considere, pour V > 0 fixé, un pavé droit de cotés (x, y, z) € (R*)? et de volume xyz = V. On
notera donc

E={x,5,2€®R)3:xyz="V},

et onremarque que E = f~({V}) avec f : (x, J, z2) — R qui est continue. Comme {V} est un fermé
de R, alors E est fermé de R? comme image réciproque d'un fermé.
Déterminons les extrema de I'aire total de ce pavé, donnée par 2(xy + yz + xz).

%4

On peut exprimer cette aire en fonction uniquement de x et y car z = —. On obtient donc une
Xy

aire A: R} xR} — R}, fonction de x et y, donnée par

Alx )—Z(x +V+V)
) = y X y'

A est différentiable comme somme de fonctions différentiables et on a donc, pour tout (x, y) €
R*)?,

0A %4 0A \%4

s =2-g) gren=el-5)
Ainsi, (x, y) est un point critique si et seulement si

vV v
y—;—o et x—?.

2 1 1
Onadonc y= Y etainsi x(%| =V eton trouve x = V3 et donc y = V3. Le seul point critique
X X
1 1
de A est donc (V'3,V3). Etudions la nature de ce point critique. A est deux fois différentiable
comme somme de fonctions deux fois différentiable et on a donc, pour tout (x, y) € (R¥)?,

OZA( ) 4V aZA( ) 4V 4°A ) 0°A ) =1
=5 X, =— 357, = "3 A _a W = X, =
a2 VT3 ay? Y y3'  0xdy ¥ 0yox Y

1 1
et donc, au point (V3,V3), on obtient

%A 1 1 0*A 1 1 0’A 1 1 0%A
—(V3,V3):ﬁ(V3,V3)=4, (V3,V3) =
y

1 1
V3, Vs3)=1,
0x? 0x0y Oyax( R
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etla hessienne de A au point critique est donc

HA(V3,V5) = ( ‘11 i )
Son polynéme caractéristique est P(X) = (2-X)?-1=2-X-1D2-X+1)=(1-X)3-X) et
donc ses valeurs propres sont {1,3} c R et donc H. A(V%, V% est définie positive, ce qui veut dire
que A admet un minimum local strict au point (V%, V%).
Alternativement, on calcule le déterminant qui vaut 15 > 0, d’oit le fait que les valeurs propres de
la matrice sont de méme signe, puis la trace qui vaut 8 > 0, et qui implique que les valeurs propres

sont toutes deux strictement positives, et que l'on a donc un minimum local strict.
Comme, de plus, pour y, et xo fixés,

lim A(x,yo) = lim A(xp,y) = lim A(x,y) = +oo
x—0* y—0+ (x,y)—(0%,0)

ainsi que
lim  A(x,y) =+oo,

(X, M lloo—+00

alors (V%, V%) réalise le minimum global de A sur (R*)?. Le minimum global de I'aire est donc
atteint quand

(x,,2) = (V3,V3,V3),

c’est-a-dire pour un cube.
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