
L2 – Algèbre 4 2024-2025

Cours d’algèbre bilinéaire

I Formes bilinéaires

I.0 Produit scalaire usuel

C’est l’application�nˆ�n Ñ �, px, yq ÞÑ x¨y où si x “

¨
˚̊
˚̋

x1

...

xn

˛
‹‹‹‚, y “

¨
˚̊
˚̋

y1
...

yn

˛
‹‹‹‚,

x ¨ y “ x1y1 ` ... ` xnyn.
Proposition.

i) @x P �n, �n Ñ �, y ÞÑ x ¨ y est linéaire.

ii) @y P �n, �n Ñ �, x ÞÑ x ¨ y est linéaire.

iii) @x, y P �n, x ¨ y “ y ¨ x.

iv) @0 ‰ x P �n, x ¨ x ą 0.

Remarque. x ¨ y “ txy.
Notation. Si x P �n, soit ||x||2 “ ?

x ¨ x.
Théorème de Cauchy-Schwarz. @x, y P �n, |x ¨ y| ď ||x||2||y||2.
Démo.

nÿ

i“1

nÿ

j“1

pxiyj ´ xjyiq2 ě 0 ô
ÿ

i

ÿ

j

px2
i y

2
j ` x2

jy
2
i ´ 2xiyixjyjq ě 0

ô p
ÿ

i

x2
i qp

ÿ

j

y2j q ` p
ÿ

j

x2
jqp

ÿ

i

y2i q ´ 2p
ÿ

i

xiyiqp
ÿ

j

xjyjq ě 0

ô 2||x||22||y||22 ě 2px ¨ yq2

ô ||x||2||y||2 ě |x ¨ y| .

I.1 Formes bilinéaires

Définitions. Soit E un �´espace vectoriel.
— Une forme bilinéaire sur E est une application b : E ˆ E Ñ � telle que

— @x P E, bpx, ¨q : E Ñ � est linéaire ;
— @y P E, bp¨, yq : E Ñ � aussi.

— On dit que b est symétrique si @x, y P E, bpx, yq “ bpy, xq.
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— On dit que b est antisymétrique si @x, y P E, bpx, yq “ ´bpy, xq.
— On dit que b est alternée si @x P E, bpx, xq “ 0.
Notations. Soient BilpEq, resp. BilSpEq, resp. BilApEq, l’ensemble des formes

bilinéaires sur E, resp. des formes bilinéaires symétriques, resp. l’ensemble des
formes bilinéaires antisymétriques.

Exercices.

1) L’ensemble BilpEq est un�´espace vectoriel pour les lois ordinaires et BilpEq “
BilSpEq ‘ BilApEq.

2) Polarisation.

i) Soit b P BilSpEq. Alors @x, y P �n, bpx, yq “ 1
2
pbpx ` y, x ` yq ´ bpx, xq ´

bpy, yqq.
ii) Soit b P BilpEq. Alors b antisymétrique ô b alternée.

Exemples.

a) Les applications suivantes sont bilinéaires symétriques.
— �

n ˆ�n, px, yq ÞÑ x ¨ y ;
— Mnp�q ˆ Mnp�q Ñ �, pA,Bq ÞÑ TrAB ;
— l2p�q ˆ l2p�q Ñ �, ppanq, pbnqq ÞÑ ř

ně0 anbn
† ;

— C0pr´1, 1s,�q ˆ C0pr´1, 1s,�q Ñ �, pf, gq ÞÑ ş1
´1

fg.

b) L’application �2 ˆ �2 Ñ �, ppx1, x2q, py1, y2qq ÞÑ x1y2 ´ x2y1 est bilinéaire
antisymétrique.

c) L’application �2 ˆ �2 Ñ �, ppx1, x2q, py1, y2qq ÞÑ x1y2 est bilinéaire mais ni
symétrique ni antisymétrique.

I.2 Matrices

Définition. Soit A P Mnp�q. L’application

φA : Mn1p�q ˆ Mn1p�q Ñ �, pX, Y q ÞÑ tXAY

est bilinéaire.
Exercice. L’application φA est symétrique ô la matrice A est symétrique. L’ap-

plication φA est antisymétrique ô la matrice A est antisymétrique.

†. l2p�q “ tpanq P �� :
ř

n a
2
n ă 8u
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Notations. Soient Snp�q “ tA P Mnp�q : tA “ Au, Anp�q “ tA P Mnp�q :
tA “ ´Au.

Définition. Matrice d’une forme bilinéaire. Soit B “ pe1, ..., enq une base
d’un �´espace vectoriel E. Si φ P BilpEq, on pose rφsB “ pφpei, ejqq1ďi,jďn.

Proposition. Avec les notations de la définition.

@x “ x1e1 ` ... ` xnen,
@y “ y1e1 ` ... ` ynen, φpx, yq “ 4XAY

où A “ rφsB, X “ tpx1, ..., xnq, Y “ tpy1, ..., ynq P Mn1p�q.
On en déduit le
Théorème. Soit E un �´espace vectoriel de dimension n, de base B. Alors

l’application φ ÞÑ rφsB définit des isomorphismes d’espaces vectoriels :

BilpEq » Mnp�q
BilSpEq » Snp�q
BilApEq » Anp�q .

Exemple. Soit E “ �rxsď2. Soit B “ p1, x, x2q. Soit B1 “ p1, x, 2x2 ´ 1q. Soit
φ : E ˆ E Ñ �, pf, gq ÞÑ ş1

´1
fpxqgpxq?

1´x2 dx “ şπ
0
fpcos tqgpcos tqdt. Alors

rφsB “

¨
˚̊
˚̋

π 0 π
2

0 π
2

0

π
2

0 3π
8

˛
‹‹‹‚, rφsB1 “

¨
˚̊
˚̋

π 0 0

0 π
2

0

0 0 π
2

˛
‹‹‹‚ .

I.3 Formules de changement de bases et congruence des ma-
trices

Proposition. Soit E un �´espace vectoriel de dimension n. Soient B, B 1

deux bases de E. Soit φ P BilpEq. Si A “ rφsB, A
1 “ rφsB1 , P “ PB,B1 †, alors

A1 “ tPAP .

Définition. On dit que A,A1 P Mnp�q sont congruentes si A1 “ tPAP pour
une matrice P P Mnp�q inversible.

Théorème. Classes de congruences des matrices symétriques et anti-
symétriques réelles.

†. c-à-d si B “ pe1, ..., enq, B1 “ pe1
1, ..., e

1
nq, alors P “ ppijq1ďi,jďn où @1 ď j ď n, e1

j “řn
i“1 pijei ; c’est la matrice de passage de la base B dans la base B1.
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i) Soit A P Snp�q. Il existe des entiers r, s ě 0 et une matrice inversible P P
Mnp�q tels que

tPAP “

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̋

1
. . .

1

´1
. . .

´1

0
. . .

0

˛
‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‚

matrice diagonale avec r « 1 » et s « ´1 ». De plus, r ` s “ rgA.

ii) Soit A P Anp�q. Alors rgA “ 2d est pair et il existe une matrice inversible P

telle que

tPAP “

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˝

J
. . .

J

0
. . .

0

˛
‹‹‹‹‹‹‹‹‹‹‹‹‚

matrice diagonale par blocs avec d blocs J “
¨
˝ 0 ´1

1 0

˛
‚de taille 2 ˆ 2.

Démo. Plus tard dans le cours.

I.4 Noyau et rang d’une forme bilinéaire symétrique

Définitions. Soit E un �´espace vectoriel. Soit φ P BilSpEq Y BilApEq.
— Le noyau de φ est kerφ “ tx P E : @y P E, φpx, yq “ 0u.
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— Le rang de φ, noté rgφ, est la dimension de l’image de l’application linéaire
γφ : E Ñ E˚, x ÞÑ φpx, ¨q †.

— On dit que φ est non dégénérée si kerφ “ 0.
Remarque. Si E est un �´espace vectoriel de dimension n et de base B, si on

note B˚ la base duale de E˚, alors rφsB “ rγφsB,B˚ P Mnp�q.
Théorème du rang pour les formes bilinéaires symétriques et antisy-

métriques. Soit E un �´espace vectoriel de dimension n. Soit φ P BilSpEq Y
BilApEq. Alors :

n “ dim kerφ ` rgφ .

I.5 Produits scalaires

Définitions. Soit φ P BilSpEq.
— On dit que φ est positive si @x P E, φpx, xq ě 0.
— On dit que φ est négative si @x P E, φpx, xq ě 0.
— On dit que φ est définie positive si @0 ‰ x P E, φpx, xq ą 0.
— On dit que φ est définie négative si @x P E, φpx, xq ě 0.
Un produit scalaire sur E est une forme bilinéaire symétrique et définie positive

φ P BilpEq.
Exemple. Le produit scalaire usuel est un produit scalaire.
Exercices.

1) pA,Bq ÞÑ TrpABq est un produit scalaire sur Snp�q.
2) pA,Bq ÞÑ ´TrpABq est un produit scalaire sur Anp�q.

I.6 Inégalité de Cauchy-Schwarz

Soit ϕ : E ˆ E Ñ � une forme bilinéaire symétrique positive.
Théorème. Soient x, y P E .

|ϕpx, yq| ď
a
ϕpx, xq

a
ϕpy, yq .

Démo.

†. On note E˚ “ L pE,�q.
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Soit A “
¨
˝ ϕpx, xq ϕpx, yq

ϕpy, xq ϕpy, yq

˛
‚. On a :

@λ, µ P �, pλ, µqA
¨
˝ λ

µ

˛
‚“ ϕpλx ` µy,λx ` µyq ě 0 .

Donc si v P �2 est un vecteur propre de A pour une valeur propre α P �, alors

tvAv “ αtv.v ě 0 ñ α ě 0 .

Mais alors comme le déterminant est le produit des valeurs propres

détA ě 0 ñ ϕpx, xqϕpy, yq ´ ϕpx, yq2 ě 0

ñ
a
ϕpx, xq

a
ϕpy, yq ě |ϕpx, yq| .

Corollaire. Si ϕ est un produit scalaire, si on pose ||x||ϕ “ a
ϕpx, xq pour tout

x P E, alors l’application E Ñ �ě0, x ÞÑ ||x||ϕ est une norme, c-à-d

iq@x P E, ||x||ϕ ě 0.iiq||x||ϕ “ 0 ô x “ 0.iiiq@x, y P E, ||x ` y||ϕ ď ||x||ϕ ` ||y||ϕ.

Exercice. Identité du prallélogramme. @x, y P E, ||x ` y||2 ` ||x ´ y||2 “
2||x||2 ` 2||y||2.

I.7 Produit scalaire hermitien

Soit E un �´espace vectoriel.
Définitions.

a) On dit que l’application E ˆ E Ñ �, px, yq ÞÑ xx, yy est une forme sesquili-
néaire si

(i) @x P E, E Ñ �, y ÞÑ xx, yy est linéaire ;

(ii) @y P E, E Ñ �, x ÞÑ xx, yy est antilinéaire † ;

b) on dit que c’est une forme sesquilinéaire hermitienne si de plus

piiiq @x, y P E, xx, yy “ xy, xy ;

†. c-à-d @x, x1 P E, xx ` x1, yy “ xx, yy ` xx1, yy, @x P E, @t P �, xtx, yy “ txx, yy.
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c) on dit que c’est un produit scalaire hermitien si de plus

pivq @x P E, xx, xy ą 0 .

Exemples.

a) px, yq ÞÑ řn
i“1 xiyi est une forme hermitienne sur �n.

b) pf, gq ÞÑ ş1
´1

fg est une forme hermitienne sur �rXs.
Exercices.

1) Notons xx, yy “ αpx, yq ` iβpx, yq avec αpx, yq, βpx, yq P � pour tous x, y P E.
Vérifier que x¨, ¨y est une forme sesquilinéaire hermitienne ô α est bilinéaire
symétrique et β est bilinéaire antisymétrique.

2) Soit A P Mnp�q. Vérifier que Mn1p�q ˆ Mn1p�q Ñ �, pX, Y q ÞÑ tXAY est
une forme sesquilinéaire hermitienne ô tA “ A.

fin du cours du 22 janvier
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