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VII.4 Isométries affines

N
Soit € un espace affine euclidien, c-a-d € est une espace euclidien.

Théoréme. Soit T': &€ — & une application telle que
"M,N e &, [[T(M)T(N)|| = |[MN]| .

Alors T est une transformation affine bijective.

On dit que T est une isométrie affine.

Démeo. 1 suffit de démontrer que 7" est affine car alors T e O(&) est inversible
et donc T est bijective (exo).

Supposons que & = R™ avec le produit scalaire usuel. On a Yz,y € R, ||T(z) —

Tl = [l =yl
Solent z,y € R", 0 < A < 1. Soit z = Az + (1 — \)y.
Alors

Iz =2l = = Nllz =yl = |IT(z) = T(2)[]| = (1 = N[|T(x) = T(y)]]

|z = yll = Allz = yl[ = |[T'(z) = T(y)[| = AT (z) — T(y)]|
= |[T'(z) = T(y)|| = [[T'(z) = T()|| + |[T'(2) = T(y)]l
=35>0, T(z) - T(y) = s(T(zx) — T()) .
Mais alors

T(z) = sT(x)+(1=s)T(y) = |[T(2) =T(y)l| = s[[T(x) =T )|l = N|T(x) =T (y)]]

= 5=\

d'ou T(z) = NT'(z) + (1 = N)T(y) Q.e.d.

Définition. Un déplacement est une isométrie f tel que dét?) = 1; un antidé-

placement est une isométrie f tel que dét? =—1.

VIL.5 Isométries affines de R?

Exemples.

a) Les translations.
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b) La rotation de centre y = (Z;) et d’angle 0 e R :

v (T 2 1\ _ [cosf —sinb\ [z, 1 —cosf sinf U1
<$2> €R%, Ry <$2> - (siné’ cos 6 ) (@) + ( —sinf 1 —cosQ) <y2 :
¢) La symétrie orthogonale par rapport a la droite A,y < R? qui passe par

Y2
M, S,o(M) = M’ tel que A, 4 est la médiatrice de [M, M']T.

C-a-d :

v (1 2 1) _ [cosf sind 1 1—cosf —sind U1
(I2> € R% Syo (Ig) - (sinH—cos@) (xz) + < —sin 1+cos€> (yz) :

Théoréme. Soit f : R? — R? une isométrie ALORS

— f est une translation : f = t-; pour un vecteur U € R?;

— ou f est une rotation : f = 744 pour un point A € R? et un angle 6 € R;

— ou [ est une réflevion glissée : f =t o sa pour une droite affine A = R?

Yy = <y1> et qui fait un angle g avec ’axe des abscisses :

=
et un vecteur w € A.
Ezxercice. Trouver le centre de la rotation

xr /3 V3 Y
S (P . OTRNE DAV R A |
(z,y) (2 syt Lo 2+)

VII.6 Isométries affines de R3

Ezemples.

a) La rotation RA?G(M> = A+ R?H(m) d’angle 6 et daxe A + Rk o

K] =1,0€eR, AcR3.%,
b) La réflexion orthogonale de plan P = R? définie par r9(M) = M’ ou P est le
plan médiateur de [M M'] 3
Théoréme. Soit f : R? — R? une isométrie. ALORS
— f est une translation : f =t pour un u € R3;
- S N 3T =
— ou f es_t)un vissage : [ = tWORA?ﬂ on Ae R k|| =1,0 € R,
weREK;
T. cca-d A ={zeR? : ||Mz|| = ||M'z||}
1. et VU e R3, ﬁ? 6(?) = cosOT +sinfk AT+ (1—cosb)(k -T)E.
§. c-a-dP={xeR’ : ||[Mz| = ||Mz|[}.
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— ou f est une antirotation f = Sp o R ou Sy est une réflexion orthogonale
par rapport au plan P, R est une rotation d’axe D avec D 1P ;

— ou f est une réflexion glissée : f =t o Sp ot Sp est une réflexion ortho-
gonale par rapport au plan P avec W € P

Corollaire. Un déplacement de IR? avec un point fixe est une rotation. (Euler)

Ezemple. Soit f(z,y,z) = (—y + 1l,x + 1,z + 1). Alors f est un vissage :

= avec A = (0,1,0).

’2

VIII Coniques

VIII.1 Définitions

f=tg ol g

On appelle conique un sous-ensemble de R? de la forme :
Cr = {(z,y) e R* : F(z,y) =0}

ot F(z,y) = ax® + 2bry + cy?® +2dx+2ey+ f pour certaines constantes a, b, ¢, d, e, f €

qr(z,y)

R ou (a,b,c) # (0,0,0).
Ezxemples : les cercles, les ellipses, les hyperboles, les paraboles.

On définit [’homogénisé de F' par :
1
Hp(z,y,2) = ax® + 2bxy + cy® + 2dxz + 2eyz + f2* = 2*F <(x,y))
z

Si une conique ¥ peut étre définie par une fonction F = ax? + 2bwy + cy? +

<abd>
bce
de f

est inversible, alors on dit que € est une conique non dégénérée.
abd

Remarque. La matrice ( 2 c ; ) est la matrice de la forme quadratique Hp dans
e

2dx + 2ey + f telle que la matrice

la base canonique.
Ezemple. La conique d’équation 22 —y = 0 dans R? est non dégénérée car si
on pose F(x,y) := 22 —y, alors Hp(x,y,2) = 2% — yz et la matrice associée est

10 0
(0 0 *é) qui est inversible.

0—1 0
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1.2 g .('f fag xf 1 0 -

0.6 | _

FIGURE 2 — ellipse

Remarque. Une conique, méme non dégénérée, peut-étre vide : 22 + 9> +1 =0

n’a pas de solution dans R?.

VIII.2 Forme réduite des coniques non dégénérées

Exemples de coniques non dégénérées

— Dellipse d’équation F(xy,xs) = a12? + aszs — 1 ol ay,as > 0,

— D’hyperbole déquation F(xy,xs) = a2 — asxs — 1 ol ay,as > 0,

— la parabole déquation F(z1,22) = a;2? — 25 ol a; > 0

- £ A 2 2 2

sont des coniques non dégénérées (on a Hp(z1,x2,3) = a1xy + asx; — x5 de
signature (2,1) dans le premier cas, Hp(z1, T2, ¥3) = a17% — agri — x5 de signature
(1,2) dans le deuxiéme cas et Hp(z1, T2, 73) = a2 — xow3, de signature (2,1),
dans le dernier cas). Nous allons voir qu’a changement de repére orthonormal preés
ce sont les seules.
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FIGURE 3 — hyperbole
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FIGURE 4 — parabole
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Théoréme VIIL.1 Soit € une conique dans R? d’équation :

F(z,y) = ax® + 2bwy + cy* +2dx +2ey + f =0 .

abd
On suppose que la matrice Zc; est inversible.
e

Alors soit € est vide soit il existe o€ R?, une base orthonormée u,,uy de R?

et ay,as > 0 tels que :
(I) o+ z1uy + Toup € € = a177 + apas = 1

ou

(II) 6+ 11u; + Toup € € < a17° — agrs = 1

ou
(II1) 6+ m1u; + 2oupy €6 = a107 — 29 =0 .

On dit que les équations a droite du signe < sont les équations réduites de la

conique € .
FIN DU COURS

Ce qui suit n’a pas été fait en cours.

On dit que les droites Ruq et Ruy sont des directions principales de €. Ces
directions sont uniques si 4 n’est pas un cercle (i.e. a; # as), ce sont les droites
propres de la matrice (Z ?)

Dans les cas (1) et (I1), on dit que o est le centre de la conique et on appelle
les droites o + Ru; des (les (si ay # as) ) azes principauzs de €.

Démeo.

Posons qr(z,y) = ax® + 2bxy + cy?, l(z,y) = 2dz + 2ey. Soit uy, uy une base
orthonormale de vecteurs propres de la matrice (Z ?) associés aux valeurs propres
A1, Ag.

On a alors : gp(z1u1 + Tous) = /\1:1“% + )\2:{'3 pour tous x1,z2 € R.

On a donc, pour tous z1, 22 € R :
2 2
F(ziuy + zoug) = Mz + Aoz + l(x1ug + 2ous) + f
_/\,.2 /\,,,2 e g
= Mx] + Aoz + aqxy + aoxy + f
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avec a; = l(u;).
Remarque. Si (o, 3, u3) est un repére du plan affine R?, si Fy(z1,20) 1= F(o+

T1U7 + x2U3), alors
V-Ilax%xiﬁ € R) HF1 (371,.%'2,(173) - HF(xl(u_)bO) + x?(%}a()) + $3(07 1)) .

SiA, A2 #0,0na:

/

F(xlul -+ .CL'QU,Q) )\1 (.@1 + 7) + )\2(.772 -+ 7)2 + c

2\ 2o
pour une certaine constante ¢’. Si on pose 6 := 2)\1 U] — 2)\ 5y U, on trouve :
aq Qo
F(G + riur + QZ’QUQ) = F((I’l — 7)“1 + (.I'Q — 7)’&2)
2\ 2o

= Az} + Aoas + ¢
si x1, 25 € R. En particulier, ¢ = F(o).
Or, si G(1,72) := F(o + z1u; + Tous) = \j2? + X\oz2 + ¢, on a :

He (1, 29, 13) = M 22 4+ \ows + c’x§ .

Comme Hg(xq, g, 23) = Hp(x1(u1,0) + 22(us, 0) + 23(0, 1)), He est non dégé-
nérée et donc ¢ = F (o) # 0.

Donc :
6+ Ty + ToUy € F = M + Azt + F(o) =0
—A 2 —A 2
= Ty + x5 =1 (%) .
F(G) 1 F(G) 2 ( )
Si ;(i‘}l), F()g > (), on pose a; = F(e Si = ’\1 > 0, ’2,? < 0, on pose a; := F’(—’g)
et ay := % > 0. Si ﬂ < 0, W)L\B) > 0, on echange uy et uy et on est ramené
au cas précédent. Enﬁn si F()‘l), F()(\;) < 0, I’équation (x) n’a pas de solution donc

C =J.
Remarque. Comment trouver o7

Réponse. Le point © est I'unique point de R? qui vérifie le systéme :

{aFm 8

0Fy, (o)

En effet, d’apres la formule de Taylor, on a :

F(o+v)=qr(v)+ < (g?ﬁgg) LU > +F(0)
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pour tout vecteur v de IR?. Donc le point & vérifie :

() o+ e

Y

pour tous zu; + zaus € R? donc :

{an (o) =0

0F,(0) =0

De plus, on peut vérifier que ce systéme a une seule solution.

SiA17éoetA2:0:
Soit (u1,uz) une base de vecteurs propres de la matrice (g() associés aux

valeurs propres Ay, 0.
Comme précédemment, on a :

F(ziuy + 2ous) = Ma] + aywy + agwy + f

pour certaines constantes réelles aq, as. Comme A\; # 0, on a :

a
F(zquy + zous) = A (x1 + i)z + e + ¢
1

pour une certaine constante ¢'.

oo = o1
On pose o' := ox; U1 et on trouve

G(x1,9) 1= F(0' + z1uy + Toug) = \2? + gz + ¢ .

Or, Hp est non dégénérée donc H aussi. Mais :

2 /.2
Hg<.r1, Xa, CL’3) = )\1.131 + Qo3 + C X3

qui est une forme quadratique de matrice :

M 0O
009
O%c’

dans la base canonique de R?. Cette matrice doit étre inversible donc ap # 0.

On pose alors :
oy c
S i=——U1 — —Uy .
2)\1 (6]
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On obtient alors :

c/

F(o 4 zuy + v9ug) = F((21 — 27/\1)“1 + (22 — ;2)“2)

2
= /\1.T1 + QTy .

Par conséquent, on a :
O+ T1uq +$2U26(5<:>F(0+$1U1 +I’2U2) =0

<= )\11’% + Qo = 0

—A1
e 12 —2,=0.
a2

Quitte a changer us en —us, on supposera que ;—);1 > 0. On pose alors a; := ==L,
Remarque. Comment calculer o dans ce cas ?
Réponse. le point & est 'unique point de R? tel que :

=0t ((ZFE])m )=
(ex0).

De plus, pour ce point & € R?, on a :
F(O + r1ur + I'QUQ) = )\1%’% + o

ou%_<(dQ ) o)

Pour résumer, on a le tableau suivant pour une conique non dégénérée d’équa-
tion F(z,y) = 0 dans R? :

sign(qr) nature de la conique
ellipse [}
(2’ O> sisign(Hp)=(2,1) ’ sisign(Hp)=(3,0)
(1,1) hyperbole
(1,0) parabole

Exemple. On considére la conique € d’équation :
oy -+t +4r+3y+4=0.
Pour trouver o = (¢, o), on résout le systéme :
{axpgo; =0
OyF(e) =0
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200 +yo+4 =0
To+2y0+3=0

) 2
©$0:—§7y0:—§-

On a de plus, qr(z,y) = 22 + zy + y>. On cherche donc les valeurs propres

el = (1)

AL = %, Ay = % Si (u1,us) est une base orthonormale de vecteurs

propres associés a Ai, Ag, alors on trouve :

A1, Ao de la matrice

On trouve :

F(G + iU + CL’QUQ) = F(G) + )\1@% + )\2[[’%

L 1, 3,
=—-+-x]+ z75 .
3 271 272
Donc :
2 32
G+I1U1+$2U2€%©—§+§Il+§l’2:0

©§x%+§x§:1.

Donc % est une ellipse de centre (—5/3,—2/3) et dont les axes principaux sont

les droites

o+ Ru; = (y=—x—7/3)

o+ Ruy=(y=x+1)
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