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VII.4 Isométries affines

Soit E un espace affine euclidien, c-à-d ÝÑ
E est une espace euclidien.

Théorème. Soit T : E Ñ E une application telle que

@M,N P E, ||ÝÝÝÝÝÝÝÝÑ
T pMqT pNq|| “ ||MN || .

Alors T est une transformation affine bijective.
On dit que T est une isométrie affine.
Démo. l suffit de démontrer que T est affine car alors ÝÑ

T P OpEq est inversible
et donc T est bijective (exo).

Supposons que E “ �n avec le produit scalaire usuel. On a @x, y P �n, ||T pxq´
T pyq|| “ ||x ´ y||.

Soient x, y P �n, 0 ă λ ă 1. Soit z “ λx ` p1 ´ λqy.
Alors

||z ´ x|| “ p1 ´ λq||x ´ y|| ñ ||T pzq ´ T pxq|| “ p1 ´ λq||T pxq ´ T pyq||

||z ´ y|| “ λ||x ´ y|| ñ ||T pzq ´ T pyq|| “ λ||T pxq ´ T pyq||
ñ ||T pxq ´ T pyq|| “ ||T pxq ´ T pzq|| ` ||T pzq ´ T pyq||

ñ D s ą 0, T pzq ´ T pyq “ spT pxq ´ T pzqq .

Mais alors

T pzq “ sT pxq`p1´sqT pyq ñ ||T pzq´T pyq|| “ s||T pxq´T pyq|| “ λ||T pxq´T pyq||

ñ s “ λ

d’où T pzq “ λT pxq ` p1 ´ λqT pyq Q.e.d.

Définition. Un déplacement est une isométrie f tel que dét
ÝÑ
f “ 1 ; un antidé-

placement est une isométrie f tel que dét
ÝÑ
f “ ´1.

VII.5 Isométries affines de �2

Exemples.

a) Les translations.
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b) La rotation de centre y “
´
y1
y2

¯
et d’angle θ P � :

@
´
x1
x2

¯
P �2, Ry,θ

´
x1
x2

¯
“

´
cos θ ´ sin θ
sin θ cos θ

¯ ´
x1
x2

¯
`

´
1 ´ cos θ sin θ
´ sin θ 1 ´ cos θ

¯ ´
y1
y2

¯
.

c) La symétrie orthogonale par rapport à la droite ∆y,θ Ď �
2 qui passe par

y “
´
y1
y2

¯
et qui fait un angle θ

2
avec l’axe des abscisses :

@M, Sy,θpMq “ M 1 tel que ∆y,θ est la médiatrice de rM,M 1s †.

C-à-d :

@
´
x1
x2

¯
P �2, Sy,θ

´
x1
x2

¯
“

´
cos θ sin θ
sin θ ´ cos θ

¯ ´
x1
x2

¯
`

´
1 ´ cos θ ´ sin θ
´ sin θ 1 ` cos θ

¯ ´
y1
y2

¯
.

Théorème. Soit f : �2 Ñ �
2 une isométrie ALORS

— f est une translation : f “ tÝÑu pour un vecteur ÝÑu P �2 ;
— ou f est une rotation : f “ rA,θ pour un point A P �2 et un angle θ P � ;
— ou f est une réflexion glissée : f “ tÝÑu ˝ s∆ pour une droite affine ∆ Ď �2

et un vecteur ÝÑu P ÝÑ
∆.

Exercice. Trouver le centre de la rotation

px, yq ÞÑ
ˆ

´x

2
´

?
3

2
y ` 1,

?
3

2
x ´ y

2
` 1

˙
.

VII.6 Isométries affines de �3

Exemples.

a) La rotation R
A,

ÝÑ
k ,θ

pMq “ A ` RÝÑ
k ,θ

pÝÝÑ
AMq d’angle θ et d’axe A ` �ÝÑ

k où

||ÝÑk || “ 1, θ P �, A P �3. ‡.

b) La réflexion orthogonale de plan P Ď �3 définie par rPpMq “ M 1 où P est le
plan médiateur de rMM 1s §

Théorème. Soit f : �3 Ñ �
3 une isométrie. ALORS

— f est une translation : f “ tÝÑu pour un ÝÑu P �3 ;
— ou f est un vissage : f “ tÝÑu ˝ R

A,
ÝÑ
k ,θ

où A P �3, ||ÝÑk || “ 1, θ P �,
ÝÑu P �ÝÑ

k ;

†. c-à-d ∆ “ tx P �2 : ||Mx|| “ ||M 1x||u
‡. et @ÝÑv P �3,

ÝÑ
RÝÑ

k ,θ
pÝÑv q “ cos θÝÑv ` sin θ

ÝÑ
k ^ ÝÑv ` p1 ´ cos θqpÝÑ

k ¨ ÝÑv qÝÑ
k .

§. c-à-d P “ tx P �3 : ||Mx|| “ ||M 1x||u.
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— ou f est une antirotation f “ SP ˝ R où SP est une réflexion orthogonale
par rapport au plan P, R est une rotation d’axe D avec DKP ;

— ou f est une réflexion glissée : f “ tÝÑu ˝ SP où SP est une réflexion ortho-
gonale par rapport au plan P avec ÝÑu P ÝÑ

P .
Corollaire. Un déplacement de �3 avec un point fixe est une rotation. (Euler)
Exemple. Soit fpx, y, zq “ p´y ` 1, x ` 1, z ` 1q. Alors f est un vissage :

f “ tÝÑe3 ˝ R
A,

ÝÑe3 ,´π
2

avec A “ p0, 1, 0q.

VIII Coniques

VIII.1 Définitions

On appelle conique un sous-ensemble de �2 de la forme :

CF :“ tpx, yq P �2 : F px, yq “ 0u
où F px, yq “ ax2 ` 2bxy ` cy2looooooooomooooooooon

qF px,yq
`2dx`2ey`f pour certaines constantes a, b, c, d, e, f P

� où pa, b, cq ‰ p0, 0, 0q.
Exemples : les cercles, les ellipses, les hyperboles, les paraboles.
On définit l’homogénisé de F par :

HF px, y, zq :“ ax2 ` 2bxy ` cy2 ` 2dxz ` 2eyz ` fz2 “ z2F

ˆ
1

z
px, yq

˙
.

Si une conique C peut être définie par une fonction F “ ax2 ` 2bxy ` cy2 `
2dx ` 2ey ` f telle que la matrice

˜
a b d
b c e
d e f

¸

est inversible, alors on dit que C est une conique non dégénérée.

Remarque. La matrice

˜
a b d
b c e
d e f

¸
est la matrice de la forme quadratique HF dans

la base canonique.
Exemple. La conique d’équation x2 ´ y “ 0 dans �2 est non dégénérée car si

on pose F px, yq :“ x2 ´ y, alors HF px, y, zq “ x2 ´ yz et la matrice associée est˜1 0 0
0 0 ´1

2
0´1

2
0

¸
qui est inversible.

38 / 48



L2 – Algèbre 4 2024-2025

Figure 2 – ellipse

Remarque. Une conique, même non dégénérée, peut-être vide : x2 ` y2 ` 1 “ 0

n’a pas de solution dans �2.

VIII.2 Forme réduite des coniques non dégénérées

Exemples de coniques non dégénérées

— l’ellipse d’équation F px1, x2q “ a1x
2
1 ` a2x

2
2 ´ 1 où a1, a2 ą 0,

— l’hyperbole déquation F px1, x2q “ a1x
2
1 ´ a2x

2
2 ´ 1 où a1, a2 ą 0,

— la parabole déquation F px1, x2q “ a1x
2
1 ´ x2 où a1 ą 0

sont des coniques non dégénérées (on a HF px1, x2, x3q “ a1x
2
1 ` a2x

2
2 ´ x2

3 de
signature p2, 1q dans le premier cas, HF px1, x2, x3q “ a1x

2
1 ´a2x

2
2 ´x2

3 de signature
p1, 2q dans le deuxième cas et HF px1, x2, x3q “ a1x

2
1 ´ x2x3, de signature p2, 1q,

dans le dernier cas). Nous allons voir qu’à changement de repère orthonormal près
ce sont les seules.
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Figure 3 – hyperbole
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Figure 4 – parabole
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Théorème VIII.1 Soit C une conique dans �2 d’équation :

F px, yq “ ax2 ` 2bxy ` cy2 ` 2dx ` 2ey ` f “ 0 .

On suppose que la matrice

˜
a b d
b c e
d e f

¸
est inversible.

Alors soit C est vide soit il existe `o P �2, une base orthonormée u1, u2 de �2

et a1, a2 ą 0 tels que :

pIq `o ` x1u1 ` x2u2 P C ô a1x
2
1 ` a2x

2
2 “ 1

ou
pIIq `o ` x1u1 ` x2u2 P C ô a1x

2
1 ´ a2x

2
2 “ 1

ou
pIIIq `o ` x1u1 ` x2u2 P C ô a1x

2
1 ´ x2 “ 0 .

On dit que les équations à droite du signe ô sont les équations réduites de la
conique C .

fin du cours

Ce qui suit n’a pas été fait en cours.
On dit que les droites �u1 et �u2 sont des directions principales de C . Ces

directions sont uniques si C n’est pas un cercle (i.e. a1 ‰ a2), ce sont les droites
propres de la matrice

´
a b
b c

¯
.

Dans les cas pIq et pIIq, on dit que `o est le centre de la conique et on appelle
les droites `o `�ui des (les (si a1 ‰ a2) ) axes principaux de C .

Démo.
Posons qF px, yq “ ax2 ` 2bxy ` cy2, lpx, yq “ 2dx ` 2ey. Soit u1, u2 une base

orthonormale de vecteurs propres de la matrice
´
a b
b c

¯
associés aux valeurs propres

λ1, λ2.
On a alors : qF px1u1 ` x2u2q “ λ1x

2
1 ` λ2x

2
2 pour tous x1, x2 P �.

On a donc, pour tous x1, x2 P � :

F px1u1 ` x2u2q “ λ1x
2
1 ` λ2x

2
2 ` lpx1u1 ` x2u2q ` f

“ λ1x
2
1 ` λ2x

2
2 ` α1x1 ` α2x2 ` f

42 / 48



L2 – Algèbre 4 2024-2025

avec αi “ lpuiq.
Remarque. Si p`o,ÝÑu1,ÝÑu2q est un repère du plan affine �2, si F1px1, x2q :“ F p`o`

x1
ÝÑu1 ` x2

ÝÑu2q, alors

@x1, x2, x3 P �, HF1px1, x2, x3q “ HF px1pÝÑu1, 0q ` x2pÝÑu2, 0q ` x3po, 1qq .

Si λ1,λ2 ‰ 0, on a :

F px1u1 ` x2u2q “ λ1px1 ` α1

2λ1

q2 ` λ2px2 ` α2

2λ2

q2 ` c1

pour une certaine constante c1. Si on pose `o :“ ´ α1

2λ1
u1 ´ α2

2λ2
u2, on trouve :

F p`o ` x1u1 ` x2u2q “ F ppx1 ´ α1

2λ1

qu1 ` px2 ´ α2

2λ2

qu2q

“ λ1x
2
1 ` λ2x

2
2 ` c1

si x1, x2 P �. En particulier, c1 “ F p`oq.
Or, si Gpx1, x2q :“ F p`o ` x1u1 ` x2u2q “ λ1x

2
1 ` λ2x

2
2 ` c1, on a :

HGpx1, x2, x3q “ λ1x
2
1 ` λ2x

2
2 ` c1x2

3 .

Comme HGpx1, x2, x3q “ HF px1pu1, 0q ` x2pu2, 0q ` x3po, 1qq, HG est non dégé-
nérée et donc c1 “ F p`oq ‰ 0.

Donc :
`o ` x1u1 ` x2u2 P C ô λ1x

2
1 ` λ2x

2
2 ` F p`oq “ 0

ô ´λ1

F p`oqx
2
1 ` ´λ2

F p`oqx
2
2 “ 1 p˚q .

Si ´λ1

F p`oq ,
´λ2

F p`oq ą 0, on pose ai “ ´λi

F p`oq . Si ´λ1

F p`oq ą 0, ´λ2

F p`oq ă 0, on pose a1 :“ ´λ1

F p`oq
et a2 :“ λ2

F p`oq ą 0. Si ´λ1

F p`oq ă 0, ´λ2

F p`oq ą 0, on échange u1 et u2 et on est ramené
au cas précédent. Enfin si ´λ1

F p`oq ,
´λ2

F p`oq ă 0, l’équation p˚q n’a pas de solution donc
C “ H.

Remarque. Comment trouver `o ?
Réponse. Le point `o est l’unique point de �2 qui vérifie le système :

"
BFxp`oq “ 0
BFyp`oq “ 0 .

En effet, d’après la formule de Taylor, on a :

F p`o ` vq “ qF pvq`
A ˆ

BFxp`oq
BFyp`oq

˙
, v

E
`F p`oq
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pour tout vecteur v de �2. Donc le point `o vérifie :

A ˆ
BFxp`oq
BFyp`oq

˙
, x1u1 ` x2u2

E
“ 0

pour tous x1u1 ` x2u2 P �2 donc :
"

BFxp`oq “ 0
BFyp`oq “ 0 .

De plus, on peut vérifier que ce système a une seule solution.
Si λ1 ‰ 0 et λ2 “ 0 :
Soit pu1, u2q une base de vecteurs propres de la matrice

´
a b
b c

¯
associés aux

valeurs propres λ1, 0.
Comme précédemment, on a :

F px1u1 ` x2u2q “ λ1x
2
1 ` α1x1 ` α2x2 ` f

pour certaines constantes réelles α1,α2. Comme λ1 ‰ 0, on a :

F px1u1 ` x2u2q “ λ1px1 ` α1

2λ1

q2 ` α2x2 ` c1

pour une certaine constante c1.
On pose `o1 :“ ´ α1

2λ1
u1 et on trouve

Gpx1, x2q :“ F po1 ` x1u1 ` x2u2q “ λ1x
2
1 ` α2x2 ` c1 .

Or, HF est non dégénérée donc HG aussi. Mais :

HGpx1, x2, x3q “ λ1x
2
1 ` α2x2x3 ` c1x2

3

qui est une forme quadratique de matrice :
˜
λ1 0 0
0 0 α2

2
0 α2

2
c1

¸

dans la base canonique de �3. Cette matrice doit être inversible donc α2 ‰ 0.
On pose alors :

`o :“ ´ α1

2λ1

u1 ´ c1

α2

u2 .
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On obtient alors :

F p`o ` x1u1 ` x2u2q “ F ppx1 ´ α1

2λ1

qu1 ` px2 ´ c1

α2

qu2q

“ λ1x
2
1 ` α2x2 .

Par conséquent, on a :

`o ` x1u1 ` x2u2 P C ô F p`o ` x1u1 ` x2u2q “ 0

ô λ1x
2
1 ` α2x2 “ 0

ô ´λ1

α2

x2
1 ´ x2 “ 0 .

Quitte à changer u2 en ´u2, on supposera que ´λ1

α2
ą 0. On pose alors a1 :“ ´λ1

α2
.

Remarque. Comment calculer `o dans ce cas ?
Réponse. le point `o est l’unique point de �2 tel que :

F p`oq “ 0 et
A ˆ

BFxp`oq
BFyp`oq

˙
, u1

E
“ 0

(exo).
De plus, pour ce point `o P �2, on a :

F p`o ` x1u1 ` x2u2q “ λ1x
2
1 ` α2x2

où α2 “
A ˆ

BFxp`oq
BFyp`oq

˙
, u2

E
.

Pour résumer, on a le tableau suivant pour une conique non dégénérée d’équa-
tion F px, yq “ 0 dans �2 :

signpqF q nature de la conique
p2, 0q ellipse

si signpHF q“p2,1q ,
H

si signpHF q“p3,0q
p1, 1q hyperbole
p1, 0q parabole

Exemple. On considère la conique C d’équation :

x2 ` xy ` y2 ` 4x ` 3y ` 4 “ 0 .

Pour trouver `o “ px0, y0q, on résout le système :
"

BxF p`oq “ 0
ByF p`oq “ 0
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ô
!
2x0 ` y0 ` 4 “ 0
x0 ` 2y0 ` 3 “ 0

ô x0 “ ´5

3
, y0 “ ´2

3
.

On a de plus, qF px, yq “ x2 ` xy ` y2. On cherche donc les valeurs propres
λ1,λ2 de la matrice

rqF s “
ˆ
1 1

2
1
2
1

˙
.

On trouve : λ1 “ 1
2
, λ2 “ 3

2
. Si pu1, u2q est une base orthonormale de vecteurs

propres associés à λ1,λ2, alors on trouve :

F p`o ` x1u1 ` x2u2q “ F p`oq ` λ1x
2
1 ` λ2x

2
2

“ ´1

3
` 1

2
x2
1 ` 3

2
x2
2 .

Donc :

`o ` x1u1 ` x2u2 P C ô ´1

3
` 1

2
x2
1 ` 3

2
x2
2 “ 0

ô 3

2
x2
1 ` 9

2
x2
2 “ 1 .

Donc C est une ellipse de centre p´5{3,´2{3q et dont les axes principaux sont
les droites

`o `�u1 “ py “ ´x ´ 7{3q

`o `�u2 “ py “ x ` 1q
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