ALGÈBRE 2 INFO, printemps 2025

Fiche TD n°3,

Calcul matriciel III

Exercice 1. Soit
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
.

- 1. Calculer A^n pour n = 1, 2, 3, 4.
- 2. Deviner une formule pour $A^n, n \ge 1$ et la montrer par récurrence.

Exercice 2. On considère la matrice
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}$$
.

- 1. Calculer A^2 , A^3 et $A^3 A^2 + A \mathbb{1}_3$.
- 2. Justifier que A est inversible et exprimer A^{-1} en fonction de A^2,A et $\mathbb{1}_3.$

Exercice 3. Soient
$$A = \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix}$$
 et $P = \begin{pmatrix} 1 & 1 \\ -1 & 2 \end{pmatrix}$

- 1. Montrer que P est inversible et calculer son inverse.
- 2. Calculer $D = P^{-1}AP$.
- 3. Calculer D^n pour tout entier $n \in \mathbb{N}$.
- 4. Montrer que pour tout entier $n \in \mathbb{N}$, $A^n = PD^nP^{-1}$.
- 5. On considère les suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ définies par $a_0=b_0=1$ et la relation de récurrence :

$$\left\{ \begin{array}{l} a_{n+1}=a_n+2b_n\\ b_{n+1}=4a_n+3b_n \end{array} \right., \quad \text{ pour tout entier } n\in\mathbb{N}$$

- (a) Montrer que, pour tout entier $n \in \mathbb{N}$, $\binom{a_n}{b_n} = A^n \binom{1}{1}$.
- (b) Calculer a_n et b_n explicitement en fonction de $n \in \mathbb{N}$.

Exercice 4. Soit la matrice

$$A = \begin{pmatrix} 1 & 2 & -1 \\ 2 & 4 & -2 \\ 0 & 1 & 3 \end{pmatrix}.$$

- 1. Trouver le noyau de A.
- 2. Trouver le conoyau de A.

Exercice 5. Soit la matrice

$$B = \begin{pmatrix} 2 & 3 & 1 & 0 \\ -1 & -2 & 0 & 1 \\ 4 & 6 & 2 & -1 \end{pmatrix}.$$

1

- 1. Trouver le noyau de B.
- 2. Trouver le conoyau de B.