Université Claude Bernard - Lyon 1

Semestre de printemps 2024-2025

Cursus préparatoire : algèbre, analyse 2

Feuille nº 1 : Calculs et révisions

Exercice 1 Simplifier autant que possible les expressions suivantes, où $n \in \mathbf{N}^*$ et $x,y \in \mathbf{R}^*$:

$$A = \left(\sqrt{3\sqrt{2}}\right)^4 \quad ; \quad B = \frac{(xy^2)^3}{(-x)^2y^3} \quad ; \quad C = 3^{n+2} - 3^{n+1} - 7 \times 3^n + 5 \times 3^{n-1}$$

$$D = \frac{3 \times 16^{n+1} + (-4)^{2n+1} + (-2)^{4n}}{8^n - (-2)^{3n+2}} \quad ; \quad E = \frac{16^{n+1}}{3} + \frac{(-4)^{2n+1}}{5} + \frac{(-2)^{4n}}{6}.$$

Exercice 2 Soient $n \in \mathbb{N}^*$ et $a_1, \ldots, a_n, b_1, \ldots, b_n \in \mathbb{C}$. En général, les égalités suivantes sont-elles vraies ou fausses? Savoir passer immédiatement aux écritures avec des points de suspension et trouver des contre-exemples le cas échéant.

1.
$$\sum_{k=1}^{n} (a_k + b_k) = \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k;$$

1.
$$\sum_{k=1}^{n} (a_k + b_k) = \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k;$$
 3. $\sum_{k=1}^{n} a_k b_k = \left(\sum_{k=1}^{n} a_k\right) \left(\sum_{k=1}^{n} b_k\right);$

$$2. \sum_{k=1}^{n} \lambda a_k = \lambda \sum_{k=1}^{n} a_k;$$

$$4. \left| \sum_{k=1}^{n} a_k \right| = \sum_{k=1}^{n} |a_k|.$$

Exercice 3 Soient $a, b, c \in \mathbb{C}$ et $n \in \mathbb{N}$.

- 1. Savoir développer immédiatement les expressions $(a+b)^3$, $(a-b)^4$ et $(a^2+1)^5$.
- 2. Développer $(a+b+c)^2$.
- 3. Se souvenir de, ou retrouver la formule de factorisation de a^n-b^n puis la démontrer.
- 4. Être sûr e d'avoir compris l'égalité $\sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k = \sum_{k=0}^{n} \binom{n}{k} a^k b^{n-k}$. En particulier, considérer l'écriture avec des points de suspension et comprendre la signification du changement d'indice k' = n - k.

Exercice 4 On considère $n \in \mathbb{N}^*$

- 1. Que vaut $\sum_{k=0}^{n} k$? Montrer que $\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$.
- 2. On veut montrer que $\sum_{k=1}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2$.
 - (a) Le faire par récurrence sur n.

(b) Le faire en calculant de deux manières différentes $\sum_{k=0}^{\infty} ((k+1)^4 - k^4)$.

Exercice 5 Trouver les racines des polynômes suivants sans utiliser le discriminant :

$$P = X^2 + 3X$$
; $Q = -4X^2 + 1$; $R = X^2 + 4X - 5$; $S = 4X^2 - 4X + 1$.

Exercice 6 (*) On considère un polynôme de la forme $P = aX^2 + 2b'X + c$, avec $a \in \mathbf{R}^*$ et $b', c \in \mathbf{R}$. On pose $\Delta' = b'^2 - ac$ et on suppose que $\Delta' > 0$. Montrer que les racines de P sont données par

$$x_1 = \frac{-b' + \sqrt{\Delta'}}{a}$$
 et $x_2 = \frac{-b' - \sqrt{\Delta'}}{a}$.

Que se passe-t-il si $\Delta' = 0$ ou si $\Delta' < 0$?

Exercise 7 Pour $n \in \mathbb{N}^*$, on pose $P = nX^{n+2} - (4n+1)X^{n+1} + 4(n+1)X^n - 4X^{n-1}$. Vérifier que 2 est racine de P puis déterminer sa multiplicité.

Exercise 8 Pour $x \in [1, 2]$, on pose $f(x) = \frac{x+1+\cos x}{x^2-x+2}$

- 1. En procédant de manière naïve, montrer que $\frac{1}{5} \leqslant f(x) \leqslant 4$ pour tout $x \in [1,2]$.
- 2. En étudiant d'abord $g: x \mapsto x + 1 + \cos x$, montrer que $\frac{1}{2} \leqslant f(x) \leqslant \frac{3}{2}$ pour tout $x \in [1, 2].$

Exercice 9 (*)

- 1. Montrer que $0 \leqslant \frac{2x+1+\cos 2x}{2-x^2} \leqslant 4$ pour tout $x \in [0,1]$.
- 2. Montrer que $\frac{xe^{-\sqrt{x}}}{(\ln x)^2 \ln x + 1} \le \frac{16e^{-2}}{3}$ pour tout x > 0.

Exercice 10

- 1. Rappeler les règles des croissances comparées.
- 2. Déterminer les limites de $f(x) = \ln x e^x$, $g(x) = \frac{x^3}{e^{\sqrt{x}}}$, $h(x) = \frac{\ln(1+e^x)}{e^{\sqrt{x}}}$ et $k(x) = \frac{e^{\sqrt{x}} + 1}{e^{x^2} + 1}$ quand $x \to +\infty$.

Exercice 11

- 1. (a) Connaître les propriétés usuelles des fonctions exp et ln.
 - (b) Tracer avec précision leurs graphes.

- 2. Mêmes questions avec ch et sh.
- 3. (a) Mêmes questions avec les fonctions sin, cos, tan. Pour les graphes, faire attention aux tangentes en les points remarquables.
 - (b) Se rappeler des formules de trigonométrie.
 - (c) Démontrer que $|\sin x| \le |x|$ pour tout $x \in \mathbf{R}$ et que $\sin x \ge \frac{2}{\pi}x$ pour tout $x \in [0, \pi/2]$. Illustrer ces inégalités à l'aide d'un dessin.
- 4. (a) Connaître les propriétés usuelles de Arcsin, Arccos et surtout Arctan.
 - (b) Tracer avec précision leurs graphes.

Exercice 12

- 1. Calculer $\frac{\pi}{3} \frac{\pi}{4}$ puis $\cos \frac{\pi}{12}$ et $\sin \frac{\pi}{12}$. En déduire que $\tan \frac{\pi}{12} = 2 \sqrt{3}$.
- 2. Exprimer $\sin x \cos^3 x$ comme combinaison linéaire de termes du type $\sin kx$, avec $k \in \mathbb{N}$.
- 3. Exprimer $\operatorname{ch}^5 x$ comme combinaison linéaire de termes du type $\operatorname{ch}(kx)$, avec $k \in \mathbb{N}$.

Exercice 13 (*) On considère la fonction $f: x \mapsto \operatorname{Arcsin} \frac{x+1}{\sqrt{2(x^2+1)}}$.

- 1. Quels sont les domaines de définition, de continuité et de dérivabilité de f?
- 2. Calculer f' là où elle définie et en déduire une expression plus simple de f.
- 3. Représenter le graphe de f.

Exercice 14 Soit *I* un intervalle de \mathbb{R} , $f: I \to \mathbb{R}$ et $a \in I$.

- 1. Savoir écrire la définition avec des ε de la propriété : « $\lim_{x\to a} f(x) = \ell$ ». Être sûr·e d'avoir bien compris.
- 2. Même question avec la propriété : « f est dérivable en a ».
- 3. Être sûr e d'avoir bien compris la différence entre ce qu'on note f'(a) et f'.

Exercice 15 Déterminer en quels points les fonctions suivantes sont dérivables et calculer leur dérivée :

$$f: x \in \mathbf{R} \mapsto (1+|x|)e^{-|x|} \quad ; \quad g: x \in \mathbf{R} \mapsto \left\{ \begin{array}{ll} 0 & \text{si } x \leqslant 0 \\ e^{-\frac{1}{x^2}} & \text{sinon.} \end{array} \right.$$

Exercice 16 Soient $\lambda, \mu \in \mathbf{R}$.

1. On considère la fonction $f: \mathbf{R}^* \to \mathbf{R}$ définie par

$$f(x) = \begin{cases} 2x + \lambda & \text{si } x > 0\\ 3x + \mu & \text{si } x < 0. \end{cases}$$

À quelle condition sur λ,μ cette fonction est-elle prolongeable par continuité en 0 ?

2. Même question avec $f: \mathbf{R}^* \to \mathbf{R}$ définie par

$$f(x) = \begin{cases} \frac{\lambda}{x^2} & \text{si } x > 0\\ \frac{\mu}{x^2} & \text{si } x < 0. \end{cases}$$

Exercice 17 (*) Soit $n \in \mathbf{Z}$. On définit $f: \mathbf{R}^* \to \mathbf{R}, \ x \mapsto x^n \cos \frac{1}{x}$.

- 1. À quelle condition sur n la fonction f est-elle prolongeable par continuité en 0?
- 2. À quelle condition sur n ce prolongement est-il dérivable en 0?
- 3. À quelle condition sur n cette dérivée est-elle continue en 0?

Exercice 18 (*) À n'aborder que si tout ce qui précède est maîtrisé. Soit $a = \frac{\pi}{17}$. Le but de ce problème est de trouver une formule pour $\cos a$ n'impliquant que les quatre opérations usuelles et des racines carrées. On pose

 $x = \cos 3a + \cos 5a + \cos 7a + \cos 11a$ et $y = \cos a + \cos 9a + \cos 13a + \cos 15a$.

- 1. Montrer que $x + y = \frac{1}{2}$.
- 2. Calculer le produit xy par la méthode suivante :
 - (a) Effectuer le produit terme à terme (cela donne 16 termes).
 - (b) Écrire alors xy comme une somme de cosinus d'angles de la forme 2ka, avec $1 \le k \le 8$.
 - (c) En déduire que xy = -1.
- 3. Montrer que x > 0. En déduire les valeurs de x et y.
- 4. On pose $z = \cos 3a + \cos 5a$, $t = \cos 7a + \cos 11a$, $u = \cos a + \cos 13a$ et $v = \cos 9a + \cos 15a$. Calculer les produits zt et uv, puis exprimer z, t, u et v grâce à des radicaux.
- 5. On pose $X = \cos a$. Montrer que

$$z = 2X(8X^4 - 8X^2 + 1)$$
 et $u = X - (8X^4 - 8X^2 + 1)$.

En déduire enfin que

$$\cos\frac{\pi}{17} = \frac{1 - \sqrt{17} + \sqrt{34 - 2\sqrt{17}}}{16} + \frac{1}{4}\sqrt{\frac{17 + 3\sqrt{17}}{4} + \frac{\sqrt{34 - 2\sqrt{17}}(1 - \sqrt{17})}{8} + \sqrt{34 - 2\sqrt{17}}}.$$

Le saviez-vous ? De cette formule, on peut facilement déduire une formule analogue pour cos $\frac{2\pi}{17}$, où il n'y a que des opérations rationnelles et des racines carrées de nombres rationnels : cela montre que le polygone régulier à 17 côtés est constructible à la règle et au compas. C'est un théorème que Carl Friedrich Gauss (1777-1855) a démontré – d'une autre manière! – en 1801.