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PARTIE 1

Exercice 1 Partie entière d’une loi exponentielle
Soit X une variable aléatoire suivant une loi exponentielle de paramètre 1 (c’est-à-dire, dont

la densité est donnée par f(t) = exp(−t)1]0,+∞[(t), t ∈ R).
On note Y = ⌈X⌉ sa partie entière “supérieure”, c’est-à-dire que ⌈1.5⌉ = 2 et ⌈3⌉ = 3.

1. Calculer la loi de Y .

2. Pour tout k ∈ N∗ et t ∈ [0, 1], calculer P (Y −X ≤ t, Y = k).

3. En déduite la fonction de répartition de la variable aléatoire Z = Y −X.

4. Montrer que Z est une variable aléatoire à densité et calculer sa densité.

Correction 1 1. Y est une variable aléatoire discrète à valeurs entières k ≥ 1. Concrètement :

P (Y = k) =

∫ k

k−1

e−tdt = (e− 1)e−k.

Accessoirement, il s’agit d’une loi géométrique décalée de 1.

2. Pour 0 ≤ t < 1, on a :

P (Y −X ≤ t, Y = k) =

∫ k

k−t

e−tdt = (et − 1)e−k.

Pour t = 1, on a :

P (Y −X ≤ t, Y = k) = P (Y = k) = (e− 1)e−k.

3. Notons cette fonction FZ . Pour t < 0 et t ≥ 1, on a respectivement FZ(t) = 0 et FZ(t) = 1.
Pour 0 ≤ t < 1, il faut sommer sur k la formule obtenue ci-dessus :

P (Z ≤ t) =
∑
k≥1

P (Z ≤ t, Y = k) =
∑
k≥1

(et − 1)e−k = e−1
∑
m≥0

(et − 1)e−m = (et−1)/(e−1).

4. Vu la formule ci-dessus, FZ est continue et (sauf peut-être en 0 et en 1) de classe C1. En
dérivant P (Z ≤ t), Z est donc une variable aléatoire à densité donnée par :

et

e− 1
10<t<1 dt.
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Exercice 2 Une suite de variables aléatoires
Pour tout entier naturel n non nul, on considère la fonction fn définie par

fn(x) = 1R+(x)n
2x exp(−n2x2/2).

1. Montrer que fn est la densité d’une variable aléatoire.

2. Soit (Xn)n∈N une suite de variables aléatoires telle que, pour tout entier n ≥ 1, Xn admet
pour densité fn. Démontrer que la suite (Xn)n∈N converge en probabilité vers 0.

3. Converge-t-elle dans l’espace L2 ? On rappelle qu’une suite de variables aléatoires (Yn)
converge vers Z dans L2 si limn→∞E[(Yn − Z)2] = 0.

4. Montrer que (nXn)n∈N converge en loi vers une variable que l’on identifiera par sa densité.

Correction 2 1. Il suffit de calculer :∫
R

fn(x)dx =
[
− exp(−n2x2/2)

]+∞

x=0
= 1.

2. Pour tout ϵ > 0,

P (|Xn| > ϵ) =

∫ +∞

x=ϵ

n2x exp(−n2x2/2) dx =
[
− exp(−n2x2/2)

]+∞

x=ϵ
= exp(−n2ϵ2/2).

Quand n tend vers +∞, cette quantité tend bien vers 0 donc on a convergence en proba-
bilité.

3. Prouvons que Xn tend aussi vers 0 dans L2 (le calcul fait sens car on calcule l’espérance
d’une variable aléatoire positive) :

E(Xn − 0)2 =

∫ +∞

x=0

x2n2x exp(−n2x2/2) dx.

En faisant le changement de variables y = nx, on se retrouve avec

E(Xn − 0)2 =
1

n2

∫ +∞

y=0

y3 exp(−y2/2) dy.

Par croissance comparée, on voit qu’on se retrouve avec 1/n2 multiplié par une constante
finie : la limite recherchée vaut bien 0 et la suite (Xn) converge vers 0 dans L2.

4. Notons Yn = nXn et regardons la fonction de répartition correspondante FYn . Clairement,
FYn(t) < 0 pour t ≤ 0. Pour t > 0 :

FYn(t) = P (nXn ≤ t) = P (Xn ≤ t/n) =

∫ t/n

x=0

n2x exp(−n2x2/2) dx

=
[
− exp(−n2x2/2)

]t/n
x=0

= 1− exp(−x2/2).

On voit donc que la suite Yn est constante en loi (et donc convergente). La fonction de
répartition obtenue ci-dessus est continue, et C1 sauf peut-être en 0. En dérivant, on
obtient que la loi en question a comme densité :

x exp(−x2/2) 1x>0 dx.
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PARTIE 2

Exercice 3 Loi log-normale
On dit que X suit une loi log-normale standard si Y = lnX suit une loi normale N (0, 1).
On rappelle que loi normale N (0, 1) admet une densité par rapport à la mesure de Lebesgue,

donnée par

x 7→
exp(−x2

2
)

√
2π

.

1. Exprimer la fonction de répartition d’une loi log-normale standardX à l’aide de la fonction
de répartition F de la loi normale centrée réduite N (0, 1).

2. Calculer la densité de X.

3. Démontrer queX admet une espérance et calculer-là. On pourra utiliser (sans la démontrer)
cette formule ∫ ∞

−∞
e−

x2

2 dx =
√
2π.

Correction 3 1. Notons FX la fonction de répartition de X. Clairement, pour t ≤ 0,
Fx(t) = 0. Pour t > 0 :

Fx(t) = P (X ≤ t) = P (lnX ≤ ln t) = F (ln t).

2. D’après la question précédente (en regardant la limite de F (ln t) quant t tend vers 0 qui
vaut bien 0), FX est continue. De plus, FX est C1, sauf éventuellement en 0. On peut
donc dériver et obtenir :

dPX(t) =
F ′(ln(t)

t
1t>0dt =

1

t
√
2π

e−(ln(t))2/2 1t>0dt.

3. On calcule l’espérance d’une variable aléatoire positive donc le calcul a un sens :

EX =

∫ +∞

0

1

t
√
2π

e−(ln(t))2/2 t dt =
1√
2π

∫ +∞

0

1

tln t/2
dt.

On fait le changement de variables t = es :

EX =
1√
2π

∫ +∞

−∞
es−s2/2 ds =

√
e√
2π

∫ +∞

−∞
e−(s−1)2/2 ds.

On fait le changement de variables u = s− 1 et on utilise l’indication :

EX =

√
e√
2π

∫ +∞

−∞
e−u2/2 du =

√
e.
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Exercice 4 Variable aléatoire sans mémoire
On dit qu’une variable aléatoire T à valeurs dans R+ est sans mémoire si elle vérifie, pour

tous s, t > 0,
P (T > t+ s) = P (T > t)P (T > s).

1. Montrer qu’une variable aléatoire T de loi exponentielle de paramètre λ > 0, c’est-à-dire
dont la densité est donnée par f(t) = λ exp(−λt)1[0,+∞[(t) est une variable aléatoire sans
mémoire.

2. Réciproquement, soit T une variable aléatoire à valeurs dans R+ sans mémoire et vérifiant
P (T > 0) > 0.

(a) On suppose qu’il existe t > 0 tel que P (T > t) = 0. Pour tout n ∈ N∗, calculer
P (T > t/n) en fonction de P (T > t). En déduire que P (T > 0) = 0.

(b) Vu la question précédente, que pouvez-vous dire sur P (T > 1) ?

(c) Soit α = P (T > 1), on admet que α < 1. On souhaite démontrer que P (T > t) = αt

pour tout t ∈ R+.

i. Démontrer ce résultat si t ∈ N∗.

ii. On suppose t ∈ Q∗
+ et on note t = p/q. Démontrer que

P (T > p) =
(
P (T > p/q)

)q
.

En déduire que, pour tout t ∈ Q∗
+, on a P (T > t) = αt.

iii. Montrer que x 7→ P (T > x) est continue à droite sur R+.

iv. En déduire que le résultat est vrai pour tout t ∈ R+.

(d) Conclure.

3. Justifier le terme ”sans mémoire”. On pourra pour cela calculer P (T > s+ t|T > s).
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Correction 4 1. On a bien (calcul standard, juste en intégrant les exponentielles) :

P (T > t+ s) = e−λ(t+s) = e−λte−λs = P (T > t)P (T > s)

2. (a) Par hypothèse (en itérant n fois), on a P (T > t) = (P (T > t/n))n,
donc P (T > t/n) = (P (T > t))1/n.
Comme ]0, +∞[ est l’union croissante des intervalles ]t/n, +∞[, on a bien

P (T > 0) = lim
n→+∞

P (T > t/n) = 0,

ce qui contredit l’hypothèse.

(b) D’après la question précédente, pour tout t > 0 (et en particulier pour t = 1), on a
P (T > t) > 0.

(c) i. On fait comme dans la question 2(a).

ii. Encore une fois, on raisonne comme dans la question 2(a), puis on utilise que
P (T > p) = ap pour avoir que P (T > p/q) = ap/q.

iii. Il s’agit de la fonction t 7→ 1−FT (t), où FT est la fonction de répartition de T :
elle est continue à droite car différence de deux fonctions continues à droite.

iv. N’importe quel nombre réel positif peut être approximé supérieurement par une
suite de rationnels. On a donc par la question précédente le résultat vrai pour
tout t ≥ 0.

(d) On a donc la fonction de répartition de T qui vaut 0 si t ≤ 0 et 1− e−t ln(α) si t > 0
(on rappelle qu’on a supposé 0 < α < 1). On reconnâıt (en dérivant si nécessaire) la
loi exponentielle de paramètre − ln(α).

3. Par hypothèse, on a pour tout s, t > 0, P (T > s + t|T > s) = P (T > t). En d’autres
mots, si l’on sait que T a dépassé s, sa probabilité de dépasser s+ t ne dépend pas de t :
on n’a pas de mémoire du fait qu’on a dépassé t.
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