FEUILLE DE TD 4

Fonction de répartition, lois usuelles

Toutes les variables aléatoires (v.a.) sont définies sur le même espace de probabilités $(\Omega, \mathcal{F}, \mathbf{P})$.

Exercice 1. Espérance et que de la distribution Soit Z une variable aléatoire positive.

Montrer que Z (resp. Z^2) est intégrable si l'intégrale de gauche (resp. de droite) converge dans les égalités ci-dessous, en démontrant ces égalités :

$$\mathbf{E}(Z) = \int_0^{+\infty} \mathbf{P}(Z \ge t) \ dt \qquad \text{et } \mathbf{E}(Z^2) = 2 \int_0^{+\infty} t \mathbf{P}(Z \ge t) \ dt.$$

Exercice 2. Loi exponentielle

Soient X et Y deux variables aléatoires indépendantes telles que

$$\mathbf{P}_X(dx) = \lambda e^{-\lambda x} \mathbf{1}_{\mathbb{R}_+}(x) dx, \ \mathbf{P}_Y(dy) = \mu e^{-\mu y} \mathbf{1}_{\mathbb{R}_+}(y) dy,$$

avec $\lambda > 0$, $\mu > 0$.

- 1. Calculer leurs fonctions de répartition F_X et F_Y .
- 2. Déterminer la loi de $Z := \min\{X, Y\}$.
- 3. Calculer $\mathbf{P}(Z=X)$.
- 4. Déterminer la loi de S := X + Y. On pourra utilement traiter différemment les cas $\lambda = \mu$ et $\lambda \neq \mu$.

Exercice 3. Lois géométriques

Soient X, Y deux v.a. indépendantes telles que $X \sim \text{Geom}(p), Y \sim \text{Geom}(p'), p, p' \in]0, 1[$.

- 1. Calculer la loi de min(X, Y).
- 2. Cela vous rappelle-t-il une autre famille de variables aléatoires?

Exercice 4. Loi de Paréto Etant donné un réel a > 0, on dit que X suit une loi de Paréto de paramètre a si $X = \exp(Z)$ où Z suit une loi exponentielle de paramètre a.

1. (a) Montrer que la fonction de répartition de X est donnée par :

$$F_X(t) = \begin{cases} 0 & \text{si } t \le 1, \\ 1 - \frac{1}{t^a} & \text{si } t > 1. \end{cases}$$

- (b) En déduire que X admet une densité de probabilité f_X et en donner une expression.
- 2. Soit Y une v.a. de même loi que X et indépendante de X. Donner la loi de V = XY.

Exercice 5. Loi de Paréto - bis On considère X, Y deux v.a. indépendantes de loi de Paréto de paramètre a > 0 (comme dans l'exercice ci-dessus).

- 1. Soit $k \in \mathbb{N}^*$
 - (a) Donner la condition nécessaire et suffisante sur a assurant que X admette un moment d'ordre k (rappel : on dit que X admet un moment d'ordre k si $|X|^k$ est intégrable).
 - (b) Sous cette condition, calculer ce moment d'ordre k (c'est-à-dire $\mathbb{E}[X^k]$).

2. Démontrer que la variable aléatoire $W = \min(X, Y)$ suit encore une loi de Paréto dont on déterminera le paramètre.

Exercice 6. Loi de Weibull, Loi de Gumbel

Soit $\lambda > 0$ et X une variable aléatoire de loi

$$\mathbf{P}_X(\mathrm{d}x) = \frac{2}{\lambda^2} \ x \ e^{-(x/\lambda)^2} \mathbf{1}_{\mathbb{R}_+}(x) \mathrm{d}x.$$

On l'appelle la loi de Weibull de paramètre $(2, \lambda)$.

- 1. Calculer sa fonction de répartition F_X . En déduire la probabilité $\mathbf{P}(X^2 \leq 1)$.
- 2. Expliciter la loi de $Y = X^2$.
- 3. Expliciter la loi de $Z = -\log(X)$.

Exercice 7.

Soit Z une variable aléatoire vérifiant pour tout $x \ge 1$, $\mathbf{P}(Z > x) = \mathbf{P}(Z < -x)$ et $\mathbf{P}(|Z| > x) = x^{-2}$. Déterminer la fonction de répartition de Z.

Exercice 8.

Soit X une v.a. intégrable.

- 1. Montrer que $\mathbf{E}(|X|\mathbf{1}_{|X|>M})$ tend vers 0 quand $M\to +\infty$.
- 2. Soit (Λ_n) une famille d'événements tels que

$$\lim_{n\to\infty} \mathbf{P}(\Lambda_n) = 0.$$

- (a) Peut-on dire que la suite de variables aléatoires $(\mathbf{1}_{\Lambda_n})_n$ converge vers 0 en probabilité? Dans L^p ? Presque sûrement?
- (b) Montrer que, pour tout M > 0 fixé, la limite de $\mathbf{E}(|X| \mathbf{1}_{\Lambda_n} \mathbf{1}_{|X| \leq M})$ lorsque n tend vers $+\infty$, est nulle.
- (c) En déduire que $\mathbf{E}(|X|\mathbf{1}_{\Lambda_n})$ tend vers 0 lorsque n tend vers $+\infty$.

Exercice 9. Loi exponentielle-encore

Soient $\lambda \in \mathbb{R}_+^*$ et X_1, X_2, \ldots une suite i.i.d. de loi $\text{Exp}(\lambda)$.

- 1. Calculer la loi de $|X_1|$.
- 2. Calculer la loi de $\max_{i=1,\dots,n} X_i$.
- 3. Calculer la loi de $\min_{i=1,\dots,n} X_i$.
- 4. Montrer que la suite de variables aléatoires $(\min_{i < n}(X_i))_n$ converge en probabilité vers 0.
- 5. En utilisant la monotonie de la suite $(\min_{i\leq n}(X_i))_n$, montrer que cette convergence a également lieu presque sûrement.