Université Claude Bernard Lyon 1 Licence 3 de Mathématiques : Géométrie Année 2024

I Généralités

1° Droite affine, mesure algébrique

On se place sur une droite affine $\mathscr E$ (espace affine de dimension 1) et soit $u \in \overrightarrow{\mathscr E}$. Pour tout couple de points, (A,B). On définit $\overline{AB} \in \mathbb K$ tel que $\overline{AB} = \overline{AB}u$. Montrer que pour tout quadruplet de points A,B,C,D le rapport $\frac{\overline{AB}}{\overline{CD}}$ ne dépend pas, lui, de u.

2° Attention à la caractéristique 2

Soit \mathbb{K} un corps de caractéristique 2. (2=0) Montrer que dans tout espace affine les diagonales d'un parallèlogrammes sont parallèles.

II Équations cartésiennes

1° Exemples d'équations de droites et de plans en guise d'échauffement

- a) Soient A = (1,1) et B = (2,1). Donner une équation cartésienne de la droite passant par ces deux points.
- b) Soient A = (1, 2, -3), B = (4, -5, -2) et C = (3, -2, -3). Donner une équation du plan passant par ces trois points.

$\mathbf{2}^{\circ}$ Équation d'une droite dans le plan \mathbb{R}^2

Soit $A = (x_A, y_A)$ et $B = (x_B, y_B)$ deux points distincts du plan. Montrer qu'un point M = (x, y) appartient à la droite (AB) si et seulement si

$$\begin{vmatrix} 1 & 1 & 1 \\ x_A & x_B & x \\ y_A & y_B & y \end{vmatrix} = 0.$$

$\mathbf{3}^{\circ}$ Équation d'un plan dans l'espace \mathbb{R}^3

a) Soit $A = (x_A, y_A, z_A)$ un point, $u_1 = (a_1, b_1, c_1)$ et $u_2 = (a_2, b_2, c_2)$ deux vecteurs non colinéaires. Montrer qu'un point M = (x, y, z) appartient au plan contenant A et engendré par u_1 et u_2 si et seulement si $|x - x_A \quad a_1 \quad a_2|$

$$\begin{vmatrix} x - x_A & a_1 & a_2 \\ y - y_A & b_1 & b_2 \\ z - z_A & c_1 & c_2 \end{vmatrix} = 0.$$

b) En s'inspirant de 2°, exprimer une équation du plan (ABC) par l'annulation d'un déterminant 4×4 , où $A = (x_A, y_A, z_A)$, etc.

III Présentation paramétrique et équation cartésienne

 $\mathbf{1}^{\circ}$ Soient a,b,c,d tels que $(a,b) \neq (0,0).$ Soit D l'ensemble des points (x,y) défini par la condition :

$$(x,y) \in D \iff \exists t \in \mathbb{R}, \begin{cases} x = at + c \\ y = bt + d. \end{cases}$$

Quelle est la nature de D? En donner une équation cartésienne.

2° Soient a, b, c trois réels avec $(a, b) \neq (0, 0)$. Donner une présentation paramétrique de la droite d'équation ax + by + c = 0 dans \mathbb{R}^2 .

1

3° Poser et résoudre les mêmes questions pour une droite et un plan dans l'espace.

IV Incidence

1° Deux droites dans le plan

Soit deux droites D et D_2 d'équations $a_1x + b_1y + c_1 = 0$ et $a_2x + b_2y + c_2 = 0$ dans le plan. L'annulation de quel déterminant caractérise-t-il le parallélisme de ces deux droites?

2° Trois droites dans le plan

Ajoutons une troisième droite D_3 d'équation $a_3x + b_3y + c_3 = 0$. Montrer que D_1 , D_2 et D_3 sont parallèles ou concourantes si et seulement si

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = 0.$$

3° Deux plans dans l'espace

Soit trois plans P_1 et P_2 d'équations $a_1x + b_1y + c_1z + d_1 = 0$ et $a_2x + b_2y + c_2z + d_2 = 0$ dans l'espace. Montrer que P_1 et P_2 sont parallèles ou confondus si et seulement si

$$\operatorname{rg}\begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{pmatrix} = 1 \quad \operatorname{SSI} \quad \begin{vmatrix} b_1 & c_1 \\ b_2 & c_2 \end{vmatrix} = \begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix} = \begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix} = 0.$$

V Changement de repère

1° Dans \mathbb{R}^2 , on note (x,y) les coordonnées d'un point dans le repère canonique. Montrer que le système définit un changement de repère; décrire et tracer ce nouveau repère (origine, axes) :

$$\begin{cases} x' = 2x - y + 1 \\ y' = x + y + 2 \end{cases}$$

On se place dans \mathbb{R}^n affine, où n est un entier naturel non nul. Rappelons que l'on dit que (A_0, A_1, \ldots, A_n) est un repère affine si $(A_0, \overline{A_0A_1}, \ldots, \overline{A_0A_n})$ est un repère. Cette définition semble faire jouer un rôle particulier à A_0 . Montrer que pour toute permutation σ de $\{1, \ldots, n\}$, $(A_{\sigma(0)}, \ldots, A_{\sigma(n)})$ est un repère affine. [On pourra commencer par des exemples en dimension 2 et 3, disons, (A_2, A_0, A_1) en dimension 2 et (A_2, A_1, A_3, A_0) en dimension 3.]

^{1.} On se donne a_1, b_1, c_1 et on suppose que $(a_1, b_1) \neq (0, 0)$. Idem pour les autres droites et plans.