Contrôle Terminal 2 – Durée 120 min – mardi 23 mai 2023

Les documents, les téléphones et les calculatrices ne sont pas autorisés. La notation tiendra compte du soin apporté à la rédaction des réponses.

Les réponses mal justifiées ne permettront pas d'obtenir tous les points.

L'énoncé comporte 2 exercices.

Exercice 1. Structure d'un anneau quotient.

Dans cet exercice on veut montrer que l'anneau $\mathbb{Z}[i]/(1+3i)$ est isomorphe à l'anneau $\mathbb{Z}/10\mathbb{Z}$. Soit $R=\mathbb{Z}[i]$ l'anneau des entiers de Gauss, et \overline{R} l'anneau quotient de R par la relation 1+3i=0. Autrement dit, $\overline{R}=R/I$, où I est l'idéal engendré par 1+3i.

- 1. Montrer que i = 3 dans \overline{R} .
- 2. En déduire que 10 = 0 dans \overline{R} .
- 3. Montrer qu'il existe un unique homomorphisme d'anneaux

$$\phi: \mathbb{Z} \to \overline{R}$$
.

- 4. Calculer les images de $0, 1, 2, \ldots, 10$ par ϕ .
- 5. Montrer que ϕ est surjectif.
- 6. Quel est le noyau de ϕ ?
- 7. Conclure.

Exercice 2. Racines carrés modulo P.

On considère des quotients de l'anneau $\mathbb{C}[X]$ des polynômes à coefficients complexes.

- 1. Fixons $\lambda \in \mathbb{C}^*$. Soit R dans $\mathbb{C}[X]$. Justifier que $R \equiv R(\lambda)$ $[X \lambda]$.
- 2. Soit A et B dans $\mathbb{C}[X]$ et $n \in \mathbb{N}^*$. Montrer que les assertions suivantes sont équivalentes :
 - (a) $A \equiv B \quad [(X \lambda)^n];$
 - (b) $\exists e \in \mathbb{C} \text{ tel que } A \equiv B + e(X \lambda)^n \quad [(X \lambda)^{n+1}].$
- 3. Montrer qu'il existe $R \in \mathbb{C}[X]$ tel que $R(X)^2 X \equiv 1 \quad [X \lambda]$.
- 4. Soit $n \in \mathbb{N}^*$ et $R \in \mathbb{C}[X]$ tel que $R(X)^2X \equiv 1$ $[(X \lambda)^n]$. Montrer qu'il existe $c \in \mathbb{C}$ tel que $S(X) = R(X) c(X \lambda)^n$ vérifie

$$S(X)^2 X \equiv 1 \quad [(X - \lambda)^{n+1}].$$

- 5. En déduire que, pour tout n, il existe $R \in \mathbb{C}[X]$ tel que $R(X)^2 X \equiv 1$ $[(X \lambda)^n]$.
- 6. Soit $P \in \mathbb{C}[X]$ tel que $P(0) \neq 0$. A l'aide du théorème des restes chinois, montrer qu'il existe $Q \in \mathbb{C}[X]$ tel que $Q(X)^2X \equiv 1$ [P].
- 7. Soit $A \in \mathrm{GL}_n(\mathbb{C})$. Déduire de la question précédente qu'il existe $M \in \mathrm{GL}_n(\mathbb{C})$ telle que $M^2 = A^{-1}$.
- 8. Même question avec $M^2 = A$.

Exercice 3. On se place dans l'anneau $A = \mathbb{F}_3[X]$ des polynômes à coefficients dans le corps fini à 3 éléments. Soit $P(X) = X^8 + 1$. Le but de cet exercice est de factoriser P.

- 1. Exiber un polynôme irréductible de degré 2 dans A.
- 2. Montrer que les deux polynômes $X^4 \pm X^2 1$ n'ont pas de racine dans \mathbb{F}_9 .
- 3. En déduire qu'ils sont irréductibles dans A.

- 4. Montrer que P est sans facteur carré.
- 5. En déduire, à l'aide du théorème des restes chinois, qu'il existe un isomorphisme

$$\psi: A/(P) \to \prod_{i=1}^s K_i,$$

où s est un entier naturel et les K_i sont des corps, extensions finies de \mathbb{F}_3 .

6. On considère l'application

$$\varphi: A/(P) \longrightarrow A/(P)$$
$$y \longmapsto y^3 - y.$$

Montrer que φ est \mathbb{F}_3 -linéaire et donner un élément T de son noyau, non multiple de 1.

- 7. On note $\psi(X^6 + X^2) = (T_1, \dots, T_s)$. Montrer que $T_i \in \mathbb{F}_3$, pout tout $i = 1, \dots, s$.
- 8. En déduire que $P = \prod_{\alpha \in \mathbb{F}_3} \operatorname{pgcd}(P, X^6 + X^2 \alpha).$
- 9. Déduire de la formule précédente que $P(X)=(X^4-X^2-1)(X^4+X^2-1)$.