Chapitre 4

Intégrales à paramètres

Dans tout ce chapitre, \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .

Il s'agit dans ce chapitre de mettre en place les outils permettant d'étudier les fonctions définies par des intégrales.

Il y a en effet en analyse de nombreuses occasions de définir une fonction par une intégrale, qu'on appelle aussi intégrale à paramètre (le paramètre étant la variable dont dépend la fonction considérée).

Par exemple, on peut considérer la fonction Γ d'Euller : elle est définie (on verra ça à la fin du chapitre) pour tout x>0, par $\Gamma(x)=\int_0^{+\infty}t^{x-1}e^{-t}dt$.

4.1 Continuité des intégrales à paramètres

☆ Théorème 1

(Continuité des intégrales à paramètres) Soient $A \subset \mathbb{R}$, I un intervalle de \mathbb{R} et f une fonction définie sur $I \times A$ à valeurs dans \mathbb{K} . On suppose que :

- i) $\forall x \in A$, la fonction $f(.,x): t \mapsto f(t,x)$ est continue par morceaux sur I,
- ii) $\forall t \in I$, la fonction $f(t, .): x \mapsto f(t, x)$ est continue sur A,
- iii) (hypothèse de domination) il existe une fonction $\varphi:I\to\mathbb{R}^+$, continue par morceaux et intégrable sur I telle que

$$\forall x \in A, \quad |f(t,x)| \le \varphi(t), \quad \forall t \in I.$$

Alors la fonction $F: x \mapsto \int_I f(t,x) dt$ est bien définie et continue sur A.

Démonstration. Soit $x \in A$. La fonction f(.,x) est continue par morceaux sur I d'après i) et d'après iii), son module est majoré sur I par la fonction φ continue par morceaux et intégrable sur I.

Par suite, f(.,x) est intégrable sur I (i.e. $0 \le \int_I |f(t,x)| dt < +\infty$) et donc $\int_I f(t,x) dt \in \mathbb{K}$. On a donc montré que pour tout $x \in A$, $F(x) \in \mathbb{K}$. D'où F est bien définie sur A.

Montrons que F est continue sur A.

Soit $a \in A$. Montrons que F est continue en a. Pour cela, on va utiliser le critère séquentiel de la continuité.

Soit donc $(x_n)_n$ une suite d'éléments de A qui converge vers a. Montrons que la suite $(F(x_n))_{n\in\mathbb{N}}$ converge vers F(a).

Notons pour tout $n \in \mathbb{N}$, f_n la fonction $f(.,x_n)$ définie sur I par $f_n(t) = f(t,x_n)$ pour tout $t \in I$. On a :

- a. $\forall n \in \mathbb{N}$, f_n est continue par morceaux d'après i),
- b. La suite de fonctions $(f_n)_n$ converge simplement sur I vers la fonction f(.,a) d'après ii) avec f(.,a) continue par morceaux d'après i). En effet, pour tout $t \in I$, la fonction $f(t,.): x \mapsto f(t,x)$ est continue sur A d'après ii). Comme $\lim_n x_n = a$, on déduit que $\lim_n f_n(t) = \lim_n f(t,x_n) = f(t,a)$.
- c. D'après iii), il existe $\varphi:I\to\mathbb{R}^+$, continue par morceaux et intégrable sur I tel que

$$\forall n \in \mathbb{N}, |f_n(t)| \leq \varphi(t), \quad \forall t \in I \quad \text{i.e. } \forall n \in \mathbb{N}, |f_n| \leq \varphi \quad \text{sur } I.$$

Par suite, d'après le théorème de convergence dominée du Chapitre 1, la suite $(F(x_n))_n = \left(\int_I f_n(t)\right)dt\Big)_n$ converge et a pour limite $\int_I f(a,t)dt = F(a)$.

On a donc montré que pour tout suite $(x_n)_n$ d'éléments de A qui converge vers a, la suite $(F(x_n))_{n\in\mathbb{N}}$ converge vers F(a). Par suite F est continue en a, pour tout $a\in I$ et donc F est continue sur I.

Exercice 1

Pour $x \in \mathbb{R}$, on pose $F(x) = \int_0^{+\infty} \sin(xt)e^{-t^2} dt$. Montrer que F est bien définie et continue sur \mathbb{R} .

Correction de l'exercice 1 :

Pour $(t,x) \in \mathbb{R}^+ \times \mathbb{R}$, posons $f(t,x) = \sin(xt)e^{-t^2}$ de sorte que pour tout $x \in \mathbb{R}$, $F(x) = \int_0^{+\infty} f(t,x)dt$.

- i) $\forall x \in \mathbb{R}$, la fonction $f(.,x): t \mapsto f(t,x)$ est continue (par morceaux) sur \mathbb{R}^+ car les fonctions sinus et exponentielle sont continues sur \mathbb{R} ,
- ii) $\forall t \geq 0$, la fonction $f(t,.): x \mapsto f(t,x)$ est continue sur $\mathbb R$ car la fonction sinus l'est sur $\mathbb R$.

iii) $\forall x \in \mathbb{R}$, on a

$$|f(t,x)| = |\sin(xt)|e^{-t^2} \le e^{-t^2} = \varphi(t), \quad \forall t \ge 0,$$

avec la fonction φ est continue (par morceaux) et intégrable sur \mathbb{R}^+ .

En effet, φ est continue sur \mathbb{R}^+ car exponentielle est continue sur \mathbb{R} et $t\mapsto -t^2$ l'est aussi.

Montrons que φ est intégrable sur \mathbb{R}^+ .

En effet, φ est continue sur \mathbb{R}^+ donc intégrable sur tout segment $[0,b]\subset [0,+\infty[$ et au voisinage de $+\infty$, $\varphi(t)=\atop +\infty o(\frac{1}{t^2})$ par croissance comparée. Comme $t\mapsto \frac{1}{t^2}$ est inégrable au voisinage de $+\infty$ (intégrale de Riemman avec $\alpha=2>1$), on déduit que φ est intégrable au voisinage de $+\infty$ et par suite sur $[0,+\infty[$.

Par suite, d'après le Théorème 1 de continuité des intégrales à paramètres, la fonction F est bien définie et continue sur \mathbb{R} .

Exercice 2

Pour $x \ge 1$, on pose $F(x) = \int_0^\pi \sqrt{x + \cos t} \, dt$. Montrer que F est bien définie et continue sur $[1, +\infty[$.

Correction de l'exercice 2 :

Pour $(t,x)\in[0,\pi]\times[1,+\infty[$, posons $f(t,x)=\sqrt{x+\cos t}$ de sorte que pour tout $x\in\mathbb{R}$, $F(x)=\int_0^\pi f(t,x)dt.$ On a

- i) $\forall x \geq 1$, la fonction $f(.,x): t \mapsto f(t,x)$ est continue (par morceaux) sur $[0,\pi]$ car cosinus est continue sur \mathbb{R} et $u \mapsto \sqrt{u}$ est continue sur \mathbb{R}^+ ,
- ii) $\forall t \in [0,\pi]$, la fonction $f(t,.): x \mapsto f(x,t)$ est continue sur $[1,+\infty[$ car $u \mapsto \sqrt{u}$ est continue sur \mathbb{R}^+ et $x \geq 1$ $(x + \cos t \geq 0$ pour tout $t \in [0,\pi]$),
- iii) Soit b > 1. On a $\forall x \in [1, b]$,

$$|f(t,x)| = \sqrt{x + \cos t} \le \sqrt{b + \cos t} = \varphi_b(t), \ \forall t \in [0,\pi].$$

De plus, la fonction φ_b est continue sur le segment $[0,\pi]$ (car cosinus est continue sur \mathbb{R} et $u\mapsto \sqrt{u}$ est continue sur \mathbb{R}^+) et donc intégrable sur le segment $[0,\pi]$.

Par suite, d'après le Théorème 1 de continuité des intégrales à paramètres, la fonction F est bien définie et continue sur [1,b], $\forall b>1$ et donc définie et continue sur $\bigcup_{b>1}[1,b]=[1,+\infty[$.

4.1.1 Utilisation du Théorème de convergence dominée

Le Théorème 1 dit que quand $a\in A$, $\lim_{x\to a}\int_I f(t,x)dt=\int_I \lim_{x\to a} f(t,x)dt.$

On peut généraliser ce résultat quand a est adhérent au domaine A, a réel ou infini, grâce encore une fois au Théorème de convergence dominée.

Voici un exemple :

★Exercice 3

- 1. Montrer que $F: x \mapsto \int_0^{+\infty} e^{-x^2t^2} dt$ est bien définie et continue sur \mathbb{R} .
- 2. Déterminer $\lim_{x\to +\infty} F(x)$ et $\lim_{x\to -\infty} F(x)$.

Démonstration. 1. Soit

$$f: \mathbb{R}^+ \times \mathbb{R} \to \mathbb{R}$$
$$(t,x) \mapsto e^{-x^2t^2}$$

On a

- i) Pout tout $x \in \mathbb{R}$, $f(.,x): t \mapsto f(t,x)$ est continue (par morceaux) sur \mathbb{R}^+ car exponentielle et $u \mapsto u^2$ sont continues sur \mathbb{R} ,
- ii) De même, pour tout $t \geq 0$, $f(t, .): x \mapsto f(t, x)$ est continue sur \mathbb{R} .
- iii) Soient $a, b \in \mathbb{R}$ tel que a < b. On a pour tout $x \in [a, b]$,

$$|f(t,x)| \le e^{-c^2t^2} = \varphi_c(t), \ \forall t \ge 0$$

où $c=\min(|a|,|b|)$ (on a utilisé le fait que $y\mapsto e^{-yt^2}$ est décroissante sur $\mathbb R$ et que $|x|\geq c$.)

La fonction φ_c est continue (par morceaux) sur \mathbb{R}^+ et est intégrable sur \mathbb{R}^+ .

En effet, φ_c est continue sur \mathbb{R}^+ , car exponentielle l'est, et est donc intégrable sur tout segment $[0,d]\subset [0,+\infty[$.

Au voisinage de $+\infty$, on a $0 \le \varphi_c(t) \underset{+\infty}{=} o(\frac{1}{t^2})$ par croissance comparée. Comme $t \mapsto \frac{1}{t^2}$ est inégrable au voisinage de $+\infty$ (intégrale de Riemman avec $\alpha=2>1$), on déduit que φ_c est intégrable au voisinage de $+\infty$ et par suite sur $[0,+\infty[$.

Par suite d'après le Théorème 1, F est bien définie et continue sur tout segment [a,b] de $\mathbb R$ et donc bien définie et continue sur $\bigcup [a,b] = \mathbb R$.

4.1. CONTINUITÉ DES INTÉGRALES À PARAMÈTRES

5

2. Soit $(x_n)_n$ une suite d'éléments de $\mathbb R$ qui tend vers $+\infty$. Comme $\lim_n x_n = +\infty$, on peut supposer $x_n \ge 1$, $\forall n \ge 0$.

Considérons pour tout $n \in \mathbb{N}$, $f_n := f(.,x_n) : \mathbb{R}^+ \to \mathbb{R}$ définie par $f_n(t) = e^{-x_n^2 t^2}$ pour tout t > 0.

On a

- i) Pour tout $n \in \mathbb{N}$, $f_n = f(.,x_n)$ est continue (par morceaux) sur \mathbb{R}^+ d'après 1. i) (ou redire car car exponentielle et $u \mapsto u^2$ sont continues sur \mathbb{R}),
- ii) Convergence simple de $(f_n)_n$ sur \mathbb{R}^+ . Soit $t_0 \geq 0$.
 - a. Si $t_0=0$, pour tout $n\in\mathbb{N}$, $f_n(0)=1$ et donc $\lim_n f_n(0)=1$.
 - b. Si $t_0 > 0$, comme $\lim_n x_n = +\infty$, $\lim_n f_n(t_0) = 0$.

Par suite, la suite de fonctions $(f_n)_n$ converge simplement sur \mathbb{R}^+ vers $h: \mathbb{R}^+ \to \mathbb{R}$ définie par h(0) = 1 et h(t) = 0 pour tout t > 0.

La fonction h est continue par morceaux sur \mathbb{R}^+ (continue partout sauf en 0),

iii) $\forall n\in\mathbb{N}$, on a $|f_n(t)|=e^{-x_n^2t^2}\leq e^{-t^2}=\varphi(t)$ pour tout $t\in\mathbb{R}^+$ et donc

$$\forall n, |f_n| \leq \varphi \quad \text{sur } \mathbb{R}^+$$

avec la fonction φ continue (par morceaux) sur \mathbb{R}^+ et est intégrable sur \mathbb{R}^+ (même preuve que celle pour φ_c dans 1.).

Par suite, d'après le Théorème de convergence dominée, (les f_n et h sont intégrables sur \mathbb{R}^+ et) on a

$$\lim_{n \to +\infty} F(x_n) = \lim_{n \to +\infty} \int_0^{+\infty} f_n(t)dt = \int_0^{+\infty} h(t)dt = 0.$$

Conclusion : On a donc montré que $\lim_{n\to+\infty}F(x_n)=0$ pour tout suite réelle $(x_n)_n$ tel que $\lim x_n=+\infty$.

Par suite $\lim_{x \to +\infty} F(x) = 0$.

On montre pareil que $\lim_{x\to -\infty} F(x)=0$ (en supposant cette fois $x_n\leq -1$ pour tout n).

4.2 Dérivabilité des intégrales à paramètres

☆ Théorème 2

(Dérivabilité d'une intégrale à paramètre)

Soient I et J deux intervalles de \mathbb{R} . Soit $f:(t,x)\mapsto f(t,x)$ une fonction définie sur $I\times J$ à valeurs dans \mathbb{K} . On suppose que

- i) $\forall x \in J$, la fonction f(.,x) est continue par morceaux et intégrable sur I,
- ii) $\forall t \in I, \ f(t,.)$ est dérivable sur J i.e. $\forall t \in I, \ \frac{\partial f}{\partial x}(t,x)$ existe pour tout $x \in J$ (respectivement $\forall t \in I$, la fonction f(t,.) est C^1 sur J i.e. $\forall t \in I$, la fonction $\frac{\partial f}{\partial x}(t,.): x \mapsto \frac{\partial f}{\partial x}(t,x)$ est bien définie et continue sur J),
- iii) $\forall x \in J$, la fonction $\frac{\partial f}{\partial x}(.,x): t \mapsto \frac{\partial f}{\partial x}(t,x)$ est continue par morceaux sur I,
- iv) il existe une fonction $\psi:I\to\mathbb{R}^+$, continue par morceaux et intégrable sur I telle que

$$\forall x \in J, \quad \left| \frac{\partial f}{\partial x}(t, x) \right| \le \psi(t), \quad \forall t \in I.$$

Alors la fonction $F: x \mapsto \int_I f(t,x) dt$ est bien définie et dérivable (respectivement de classe C^1) sur J et on a

$$\forall x \in J, \quad F'(x) = \int_{I} \frac{\partial f}{\partial x}(t, x) dt.$$

Démonstration. D'après i), puisque $\forall x \in J$, la fonction $f(.,x): t \mapsto f(t,x)$ est continue par morceaux et intégrable sur I, la fonction F est bien définie sur J. Soit $a \in J$. Montrons que F est dérivable en a.

Posons $\forall (t, x) \in I \times J$

$$g_a(t,x) = \begin{cases} \frac{f(t,x) - f(t,a)}{x - a} & \text{si } x \neq a, \\ \frac{\partial f}{\partial x}(t,a) & \text{si } x = a \end{cases}$$

Notons que pour $x \neq a$, $\frac{F(x) - F(a)}{x - a} = \int_I g_a(t,x) dt$. On va appliquer le Théorème 1 de continuité des intégrales à paramètres à g_a .

- a) $\forall x \in J$ (y compris pour x = a), la fonction $g_a(.,x) : t \mapsto g_a(t,x)$ est continue par morceaux sur I d'après i) et iii).
- b) $\forall t \in I$, la fonction $g_a(t,.): x \mapsto g_a(t,x)$ est continue sur J d'après ii) (y compris pour x=a). En effet, pour $x \neq a$ c'est dû au fait que f(t,.) est continue sur J (car

dérivable) et $u\mapsto \frac{1}{u}$ continue sur \mathbb{R}^* . Et pour x=a, on a par définition de $\frac{\partial f}{\partial x}(t,a)$, pour tout $x\neq a$, $g_a(t,x)=\frac{f(t,x)-f(t,a)}{x-a}\underset{x\to a}{\to} \frac{\partial f}{\partial x}(t,a)=g_a(t,a)$.

c) $\forall x \in J$, on a, d'après l'inégalité des accroissements finis et iv),

$$\forall t \in I, |g_a(t,x)| = \begin{cases} \left| \frac{f(t,x) - f(t,a)}{x - a} \right| & \text{si } x \neq a, \\ \left| \frac{\partial f}{\partial x}(t,a) \right| & \text{si } x = a \end{cases} \leq \sup_{u \in J} \left| \frac{\partial f}{\partial x}(t,u) \right| \leq \psi(t).$$

Par suite, d'après le Théorème 1 de continuité des intégrales à paramètres, la fonction $G_a: x\mapsto \int_J g_a(t,x)dt$ est bien définie et continue sur J et donc en particulier continue en a. On en déduit que le taux $\frac{F(x)-F(a)}{x-a}$ admet une limite finie quand x tend vers a égale à $G_a(a)$ et donc que F est dérivable en a avec

$$F'(a) = \lim_{x \to a} \frac{F(x) - F(a)}{x - a} = \lim_{x \to a} G_a(x) = G_a(a) = \int_I \frac{\partial f}{\partial x}(t, a) dt.$$

Ainsi, F est dérivable en a, $\forall a \in J$, donc sur J et sa dérivée s'obtient par la dérivation sous le signe intégrale.

Enfin, si on suppose en plus dans ii) que $\forall t \in I, \ x \mapsto \frac{\partial f}{\partial x}(t,x)$ est continue sur J (i.e. la fonction f(t,.) est C^1 sur J), on a d'après le Théorème 1 de continuité des intégrales à paramètres appliqué cette fois-ci à la fonction $\frac{\partial f}{\partial x}$ (à vérifier les hypothèses), la fonction $F': x \mapsto \int_I \frac{\partial f}{\partial x}(t,x) dt$ est continue sur J et donc F est de classe C^1 sur J.

Par récurrence, on en déduit du Théorème 2, le Corollaire suivant pour les dérivées d'ordre supérieur.

★ Corollaire 1

(Intégrale à paramètre de classe C^p)

Soient I et J deux intervalles de \mathbb{R} . Soit $f:(t,x)\mapsto f(t,x)$ une fonction définie sur $I\times J$ à valeurs dans \mathbb{K} et $p\in\mathbb{N}^*$. On suppose que

- i) $\forall x \in J$, la fonction f(.,x) est continue par morceaux et intégrable sur I,
- ii) $\forall t \in I$, la fonction f(t,.) est C^p sur J i.e. $\forall k = 1,...,p$, la fonction $\frac{\partial^k f}{\partial x^k}(t,.): x \mapsto \frac{\partial^k f}{\partial x^k}(t,x)$ est bien définie et continue sur J,
- iii) $\forall k=1,...,p, \forall x\in J$, la fonction $\frac{\partial^k f}{\partial x^k}(.,x):t\mapsto \frac{\partial^k f}{\partial x^k}(t,x)$ est continue par morceaux sur I,
- iv) $\forall k=1,...,p$, il existe une fonction $\psi_k:I\to\mathbb{R}^+$, continue par morceaux et intégrable sur I telle que

$$\forall x \in J, \quad \left| \frac{\partial^k f}{\partial x^k}(t, x) \right| \le \psi_k(t), \quad \forall t \in I.$$

Alors la fonction $F: x \mapsto \int_I f(t,x) dt$ est définie et de classe C^p sur J et on a

$$\forall k = 1, ..., p, \ \forall x \in J, \quad F^{(k)}(x) = \int_{I} \frac{\partial^{k} f}{\partial x^{k}}(t, x) dt.$$

Et le Corollaire suivant :

(Intégrale à paramètre de classe C^{∞})

Soient I et J deux intervalles de \mathbb{R} . Soit $f:(t,x)\mapsto f(t,x)$ une fonction définie sur $I\times J$ à valeurs dans \mathbb{K} . On suppose que

- i) $\forall x \in J$, la fonction f(.,x) est continue par morceaux et intégrable sur I,
- ii) pour tout $t \in I$, la fonction f(t,.) est C^{∞} sur J i.e. $\forall k \in \mathbb{N}^*$, $\frac{\partial^k f}{\partial x^k}(t,.): x \mapsto \frac{\partial^k f}{\partial x^k}(t,x)$ est bien définie et continue sur J,
- iii) $\forall k \in \mathbb{N}^*$, $\forall x \in J$, la fonction $\frac{\partial^k f}{\partial x^k}(.,x): t \mapsto \frac{\partial^k f}{\partial x^k}(t,x)$ est continue par morceaux sur I.
- iv) $\forall k \in \mathbb{N}^*$, il existe une fonction $\psi_k: I \to \mathbb{R}^+$, continue par morceaux et intégrable sur I telle que

$$\forall x \in J, \quad \left| \frac{\partial^k f}{\partial x^k}(t, x) \right| \le \psi_k(t), \quad \forall t \in I.$$

Alors la fonction $F: x \mapsto \int_I f(t,x) dt$ est définie et de classe C^∞ sur J et on a

$$\forall k \in \mathbb{N}^*, \ \forall x \in J, \quad F^{(k)}(x) = \int_I \frac{\partial^k f}{\partial x^k}(t, x) dt.$$

Exercice 4

Pour $x \in \mathbb{R}$, on pose $\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} \, \mathrm{d}t.$

- 1. Quel est le domaine de définition de Γ ?
- 2. Montrer que Γ est continue sur $]0, +\infty[$.
- 3. Montrer que Γ est \mathcal{C}^{∞} sur $]0,+\infty[$, et calculer $\Gamma^{(k)}$ pour tout $k\in\mathbb{N}^*$.
- 4. Montrer que Γ est strictement convexe.
- 5. Montrer que Γ est log-convexe.
- 6. a) Montrer que pour tout x > 0, $\Gamma(x+1) = x\Gamma(x)$.
 - b) En déduire $\Gamma(n+1)$ pour tout $n \in \mathbb{N}$ et un équivalent de Γ en 0.
 - c) En déduire $\lim_{x\to 0+} \Gamma(x)$.
- 7. On rappelle que $\int_0^{+\infty} e^{-u^2} du = \frac{\sqrt{\pi}}{2}$ (Intégrale de Gauss). Calculer $\Gamma(\frac{1}{2})$.
- 8. Etudier les variations de Γ et donner l'allure de son graphe.

Correction de l'exercice 4 :

1. Considérons pour tout $x \in \mathbb{R}$,

$$f_x :]0, +\infty[\rightarrow \mathbb{R}$$
 $t \mapsto t^{x-1}e^{-t}.$

On a pour tout $x\in\mathbb{R}$, $f_x\geq 0$ et continue sur $]0,+\infty[$ (car exponentielle est continue sur \mathbb{R} et pour tout $\alpha\in\mathbb{R}$, l'application $t\mapsto t^\alpha$ est continue sur $]0,+\infty[$). Donc $\Gamma(x)$ est bien définie lorsque $f_x\geq 0$ est intégrable sur $]0,+\infty[$.

Comme pour tout $x \in \mathbb{R}$, f_x est continue sur $]0, +\infty[$, elle est donc intégrable sur tout segment $[a,b] \subset]0, +\infty[$, reste le problème au voisinage de 0 et de $+\infty$.

Au voisinage de 0, $0 \le f_x(t) \underset{t \to 0}{\sim} t^{x-1} = \frac{1}{t^{1-x}} \left(\operatorname{car} \lim_{t \to 0} e^{-t} = 1 \right)$ donc f_x est intégrable au voisinage de 0 ssi 1-x < 1 (on s'est ramené à une intégrale de Riemann au voisinage de 0) i.e ssi x > 0.

Au voisinage de $+\infty$,

$$0 \le f_x(t) = o(\frac{1}{t^2}) \tag{4.1}$$

 $\operatorname{car} \lim_{t \to +\infty} t^2 f_x(t) = \lim_{t \to +\infty} \frac{t^{x+1}}{e^t} = 0 \text{ par croissance comparée}.$

Comme $t\mapsto \frac{1}{t^2}$ est intégrable au voisinage de $+\infty$, intégrale de Riemann convergente au voisinage de $+\infty$ car $\alpha=2>1$, on déduit de (4.1) que f_x est intégrable au voisinage de $+\infty$.

Par suite, f_x est intégrable sur $]0,+\infty[$ ssi x>0 et donc le domaine de définition de Γ est $]0,+\infty[$.

2. Soit

$$f:]0, +\infty[\times]0, +\infty[\rightarrow \mathbb{R}$$

$$(t, x) \mapsto t^{x-1}e^{-t}$$

On a:

- i) $\forall x>0$, la fonction $f(.,x)=f_x: t\mapsto t^{x-1}e^{-t}$ est continue sur $]0,+\infty[$ (voir 1.),
- ii) $\forall t>0$, la fonction $f(t,.):x\mapsto t^{x-1}e^{-t}$ est continue sur $]0,+\infty[$ car exponentielle est continue sur \mathbb{R} $(t^{x-1}=e^{(x-1)\ln t})$,
- iii) Soit $0 < a < b < +\infty$. On a $\forall x \in [a, b]$,

$$\forall t>0, \quad |f(t,x)|=|t^{x-1}e^{-t}|=t^{x-1}e^{-t}\leq g(t)=\begin{cases} t^{a-1}e^{-t} & \text{si } 0< t<1\\ t^{b-1}e^{-t} & \text{si } t\geq 1 \end{cases}$$

 $\text{car } y \mapsto t^y \text{ est d\'ecroissante sur } \mathbb{R} \text{ si } 0 < t < 1 \text{ et est croissante sur } \mathbb{R} \text{ si } t \geq 1.$

On a g est continue sur $]0,+\infty[$ (même en 1) et intégrable sur $]0,+\infty[$. En effet, comme g est continue sur $]0,+\infty[$, elle est donc intégrable sur tout segment $[c,d]\subset]0,+\infty[$, reste le problème au voisinage de 0 et de $+\infty$.

Au voisinage de 0, $0 \leq g(t) \underset{t \to 0}{\sim} t^{a-1} = \frac{1}{t^{1-a}}$, on se ramène donc à une intégrale de Riemann convergente au voisinage de 0 car 1-a < 1 (comme a > 0) et donc g est intégrable au voisinage de 0.

Au voisinage de $+\infty$,

$$0 \le g(t) \underset{+\infty}{=} o(\frac{1}{t^2}) \tag{4.2}$$

$$\operatorname{car} \lim_{t \to +\infty} t^2 g(t) = \lim_{t \to +\infty} \frac{t^{b+1}}{e^t} = 0.$$

Comme $t\mapsto \frac{1}{t^2}$ est intégrable au voisinage de $+\infty$, intégrale de Riemann convergente au voisinage de $+\infty$ car $\alpha=2>1$, on déduit de (4.2) que g est intégrable au voisinage de $+\infty$.

D'où g est intégrable sur $]0, +\infty[$.

Par suite, d'après le Théorème 1, Γ est bien définie et continue sur tout segment [a,b] avec $0 < a < b < +\infty$ et donc bien définie (on le savait déjà d'après 1.) et continue sur $]0,+\infty[=\bigcup_{0 < a < b < +\infty}[a,b].$

- 3. Montrons que Γ est de classe C^{∞} . On a
 - i) $\forall x > 0$, la fonction $f(.,x) = f_x$ est continue et intégrable sur $]0,+\infty[$ d'après 1. ou 2.(i) et iii)),
 - ii) $\forall t>0$, la fonction $f(t,.):x\mapsto t^{x-1}e^{-t}=e^{(x-1)\ln t}e^{-t}$ est C^{∞} sur $]0,+\infty[$ et on a $\forall k\in\mathbb{N}^*$, $\forall x>0$, $\frac{\partial^k f}{\partial x^k}(t,x)=(\ln t)^kt^{x-1}e^{-t}$.
 - iii) $\forall k \in \mathbb{N}^*, \ \forall x > 0$, la fonction $\frac{\partial^k f}{\partial x^k}(.,x) : t \mapsto \frac{\partial^k f}{\partial x^k}(t,x) = (\ln t)^k t^{x-1} e^{-t}$ est continue sur $]0,+\infty[$ car $\ln,\ t\mapsto e^{-t}$ et $\forall \alpha\in\mathbb{R},\ t\mapsto t^\alpha$ sont continues sur $]0,+\infty[$ et $\forall k\in\mathbb{N},\ u\mapsto u^k$ est continue sur \mathbb{R} .
 - iv) Soient $0 < a < b < +\infty$ et soit $k \in \mathbb{N}^*$. On a $\forall x \in]a,b[$,

$$\forall t > 0, \quad \left| \frac{\partial^k f}{\partial x^k}(t, x) \right| = |\ln t|^k t^{x-1} e^{-t} \le g_k(t) = \begin{cases} |\ln t|^k t^{a-1} e^{-t} & \text{si } 0 < t < 1 \\ |\ln t|^k t^{b-1} e^{-t} & \text{si } t \ge 1 \end{cases}$$

même justification que dans 2..

On a g_k est continue sur $]0,+\infty[$ (même en 1) et intégrable sur $]0,+\infty[$.

En effet, comme g_k est continue sur $]0, +\infty[$, elle est intégrable sur tout segment $[c, d] \subset]0, +\infty[$.

Au voisinage de 0 (on suppose 0 < t < 1), $0 \le g_k(t) \sim |\ln t|^k t^{a-1} = (-1)^k (\ln t)^k t^{a-1}$

intégrable au voisinage de 0 car on se ramène à une intégrale de Bertrand au voisinage de 0 avec $\alpha=1-a<1$ donc convergente (ou dire que $g_k(t)=0$ $(\frac{1}{t^{1-\frac{a}{2}}})$, avec $t\mapsto \frac{1}{t^{1-\frac{a}{2}}}$ intégrable au voisinage de 0, intégrale de Riemann au voisinage de 0 avec $1-\frac{a}{2}<1$, donc convergente) et donc g_k est intégrable au voisinage de 0. Au voisinage de $+\infty$,

$$0 \le g_k(t) \underset{+\infty}{=} o(\frac{1}{t^2}) \tag{4.3}$$

 $\operatorname{car} \lim_{t \to +\infty} t^2 g_k(t) = \lim_{t \to +\infty} \frac{t^{b+1} (\ln t)^k}{e^t} = 0 \text{ par croissance compar\'ee}.$

Comme $t\mapsto \frac{1}{t^2}$ est intégrable au voisinage de $+\infty$, intégrale de Riemann convergente au voisinage de $+\infty$ car $\alpha=2>1$, on déduit de (4.3) que g_k est intégrable au voisinage de $+\infty$.

D'où g_k est intégrable sur $]0, +\infty[$.

Par suite, d'après le Corollaire 2, Γ est de classe C^{∞} sur]a,b[, $\forall 0 < a < b < +\infty$ donc sur $]0+\infty[=\bigcup_{0 < a < b < +\infty}]a,b[$ et on a

$$\forall k \in \mathbb{N}^*, \ \forall x > 0, \quad \Gamma^{(k)}(x) = \int_0^{+\infty} \frac{\partial^k f}{\partial x^k}(t, x) \, dt = \int_0^{+\infty} (\ln t)^k t^{x-1} e^{-t} \, dt.$$

4. Montrons que Γ est strictement convexe. D'après 3., on a

$$\forall x > 0, \quad \Gamma''(x) = \int_0^{+\infty} (\ln t)^2 t^{x-1} e^{-t} dt \ge 0$$

 $\operatorname{car}\, \forall x>0\text{, } \forall t>0\text{, } (\ln t)^2 t^{x-1} e^{-t}\geq 0.$

Donc Γ est convexe. Montrons qu'elle est strictement convexe.

Soit x > 0. Supposons que

$$\Gamma''(x) = \int_0^{+\infty} \frac{\partial^2 f}{\partial x^2}(t, x) \, dt = \int_0^{+\infty} (\ln t)^2 t^{x-1} e^{-t} \, dt = 0.$$
 (4.4)

 $\text{Comme } \frac{\partial^2 f}{\partial x^2}(.,x): t \mapsto (\ln t)^2 t^{x-1} e^{-t} \text{ est continue et positive sur }]0,+\infty[\text{, on déduit alors de (4.4) que } \frac{\partial^2 f}{\partial x^2}(.,x) = 0 \text{ sur }]0,+\infty[\text{, absurde car pour tout } t>0,\ t\neq 1, \\ \frac{\partial^2 f}{\partial x^2}(t,x)>0.$

D'où $\Gamma''(x) > 0$ pour tout x > 0 et donc Γ est strictement convexe.

5. Montrons que Γ est log-convexe càd montrons que $\ln\circ\Gamma$ est convexe. Notons tout d'abord que $\ln\circ\Gamma$ est bien définie sur $]0,+\infty[$ car Γ est strictement positive sur $]0,+\infty[$.

En effet, soit x>0. On a $\Gamma(x)=\int_0^{+\infty}f_x(t)dt\geq 0$ car $f_x\geq 0$ sur $]0,+\infty[$. Supposons que $\Gamma(x)=0$. Comme f_x est continue, positive, on aurait alors $f_x=0$ sur $]0,+\infty[$, absurde car pour tout t>0, $f_x(t)>0$.

On a en plus $\ln \circ \Gamma$ est C^2 (même C^{∞}) sur $]0, +\infty[$, car \ln et Γ le sont, avec

$$\forall x > 0, \ (\ln \circ \Gamma)'(x) = \frac{\Gamma'(x)}{\Gamma(x)}$$

et donc

$$\forall x > 0, \ (\ln \circ \Gamma)''(x) = \frac{\Gamma''(x)\Gamma(x) - \Gamma'^{2}(x)}{\Gamma^{2}(x)}.$$

Or d'après 3. et l'inégalité de Cauchy-Schwarz, on a

$$\Gamma'^{2}(x) = \left(\int_{0}^{+\infty} (\ln t) \, t^{x-1} e^{-t} \, dt\right)^{2}$$

$$= \left(\int_{0}^{+\infty} \left(\sqrt{t^{x-1}} e^{-t}\right) \left(\ln t \, \sqrt{t^{x-1}} e^{-t}\right) \, dt\right)^{2}$$

$$\leq \left(\int_{0}^{+\infty} t^{x-1} e^{-t} \, dt\right) \left(\int_{0}^{+\infty} (\ln t)^{2} t^{x-1} e^{-t} \, dt\right)$$

$$= \Gamma(x) \Gamma''(x).$$

On en déduit alors que $\forall x>0, \ (\ln\circ\Gamma)''(x)=\frac{\Gamma''(x)\Gamma(x)-\Gamma'^2(x)}{\Gamma^2(x)}\geq 0.$ Par suite $\ln\circ\Gamma$ est convexe i.e. Γ est log-convexe.

6. a) i) Soit x>0. On a $\Gamma(x+1)=\int_0^{+\infty}t^xe^{-t}\,\mathrm{d}t$. Par intégration par parties, $(u(t)=t^x,\,v'(t)=e^{-t})$, on obtient

$$\Gamma(x+1) = \lim_{T \to +\infty} [-t^x e^{-t}]_{t=0}^{t=T} + x\Gamma(x) = x\Gamma(x)$$

 $\operatorname{car} \lim_{T \to +\infty} -T^x e^{-T} = 0$ par croissance comparée.

b) D'après a), on a $\forall n \in \mathbb{N}^*, \ \Gamma(n+1) = n\Gamma(n)$ i.e.

$$\forall n \geq 2, \quad \Gamma(n) = (n-1)\Gamma(n-1)$$

avec
$$\Gamma(1) = \int_0^{+\infty} e^{-t} dt = \lim_{T \to +\infty} [-e^{-t}]_{t=0}^{t=T} = 1.$$

1ère méthode:

On montre par récurrence que

$$\forall n \in \mathbb{N}^*, \Gamma(n) = (n-1)!. \tag{4.5}$$

En effet:

- Initialisation : (4.5) est vraie pour n=1, $\Gamma(1)=1=0!$.

-Hérédité : Supposons que (4.5) est vraie pour $n \geq 1$ i.e. $\Gamma(n) = (n-1)!$ et montrons qu'elle reste vraie pour n+1 i.e. montrons que $\Gamma(n+1) = n!$. D'après a), $\Gamma(n+1) = n\Gamma(n) = n(n-1)! = n!$.

Par suite, d'après le principe de récurrence, (4.5) est vraie pour tout $n \ge 1$.

2ème méthode:

On a $\forall n \geq 2$, $\Gamma(n) = (n-1)\Gamma(n-1)$, donc

$$\Gamma(n) = (n-1)\Gamma(n-1)$$

$$\Gamma(n-1) = (n-2)\Gamma(n-2)$$

:

$$\Gamma(2) = 1\Gamma(1) = 1$$

En multipliant ces n-1 égalités, on obtient pour tout $n \ge 2$, $\Gamma(n) = (n-1)!$. C'est aussi vrai pour n=1, par suite pour tout $n \ge 1$, $\Gamma(n) = (n-1)!$.

ii) Cherchons un équivalent de Γ en 0. On a $\forall x > 0$, $x\Gamma(x) = \Gamma(x+1)$ donc

$$\Gamma(x) = \frac{1}{x}\Gamma(x+1). \tag{4.6}$$

Comme d'après 2., Γ est continue sur $]0,+\infty[$ et donc en particulier en 1, on a alors $\lim_{x\to 0}\Gamma(x+1)=\Gamma(1)=1.$

Par suite, on déduit de (4.6) que $\Gamma(x) \sim \frac{1}{x \to 0^+} \frac{1}{x}$.

c) On a d'après 6.b),ii) $\lim_{x\to 0^+} \Gamma(x) = \lim_{x\to 0^+} \frac{1}{x} = +\infty$.

7. On a

$$\Gamma(\frac{1}{2}) = \int_0^{+\infty} t^{-\frac{1}{2}} e^{-t} dt.$$

Avec le changement de variables $u=\sqrt{t}\ (t=u^2)$,

 $du = \frac{1}{2\sqrt{t}}dt = \frac{1}{2u}dt \iff dt = 2udu, \ t = 0 \iff u = 0, \ t \to +\infty \iff u \to +\infty, \ \text{on obtient}$

$$\Gamma(\frac{1}{2}) = \int_0^{+\infty} \frac{e^{-u^2}}{u} 2u du = 2 \int_0^{+\infty} e^{-u^2} du = \sqrt{\pi}.$$

8. Puisque la fonction Γ'' est strictement positive sur $]0,+\infty[$ (d'après 4.), la fonction Γ' est strictement croissante sur $]0,+\infty[$.

D'autre part, Γ est continue sur [1,2] et dérivable sur]1,2[(car dérivable sur $]0,+\infty[$) avec $\Gamma(1)=\Gamma(2)=1$ (d'après 6.). Par suite, d'après le théorème de Rolle, il existe

 $x_0\in]1,2[$ tel que $\Gamma'(x_0)=0.$ Comme Γ' est strictement croissante sur $]0,+\infty[$, on déduit que Γ' est strictement négative sur $]0,x_0[$ et strictement positive sur $]x_0,+\infty[$. On a donc montré qu'il existe $x_0\in]1,2[$ tel que Γ est strictement décroissante sur $]0,x_0[$ et est strictement croissante sur $[x_0,+\infty[$.

Cherchons $\lim_{x \to +\infty} \Gamma(x)$.

Comme la fonction Γ est (strictement) croissante sur $[2,+\infty[$, on a d'après 6., pour tout $x\geq 3$,

$$\Gamma(x) \ge (x-1)\Gamma(x-1) \ge (x-1)\Gamma(2) = x-1.$$

Par suite, $\lim_{x\to +\infty}\Gamma(x)=+\infty$.

De plus, toujours d'après 6., pour tout x>1, $\frac{\Gamma(x)}{x}=\frac{x-1}{x}\Gamma(x-1)\underset{x\to+\infty}{\to}+\infty$ (car $\lim_{x\to+\infty}\Gamma(x)=+\infty$). On en déduit que le graphe de Γ admet en $+\infty$ une branche parabolique de direction (y'y).

Allure du graphe de Γ :

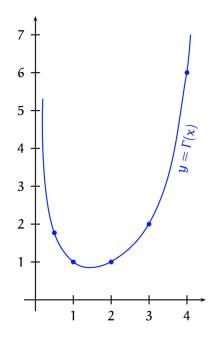


FIGURE 4.1 – graphe de Γ