Chapitre 2

Séries de fonctions

Dans tout ce chapitre, $\mathbb K$ désigne $\mathbb R$ ou $\mathbb C$. On s'intéresse à la convergence de séries de fonctions $\sum_n f_n$ où les fonctions f_n sont définies sur un même domaine non vide D de $\mathbb R$ ou $\mathbb C$, et à valeurs dans $\mathbb K$. Le module sur $\mathbb C$ est noté $|\cdot|$, $|a+ib|=\sqrt{a^2+b^2}$ pour tout $a,b\in\mathbb R$.

Séries de fonctions

Soit $(f_n)_{n\geq n_0}$ une suite de fonctions de D vers \mathbb{K} .

Définition 1

On appelle série de fonctions de terme général f_n , la suite de fonctions $(S_n)_{n\geq n_0}$ définie par

$$\forall n \ge n_0, \quad S_n = \sum_{k=n_0}^n f_k.$$

On note cette série de fonctions $\sum_{n\geq n_0} f_n$ et S_n est appelée la somme partielle de rang n de celle-ci .

Exemple:

On a déja vu des séries de fonctions particulières, comme : $\sum_{n=0}^{\infty}$

$$\sum_{n\geq 0} f_n \text{ où } f_n: x \to \frac{x^n}{n!} \text{ avec } \sum_{n\geq 0} f_n(x) \text{ de somme } e^x \text{ pour tout } x \in \mathbb{R},$$

$$\sum_{n \geq n_0}^- f_n \text{ où } f_n : x \to x^n \text{ avec } \sum_{n \geq n_0}^- f_n(x) \text{ de somme } x^{n_0} \frac{1}{1-x} \text{ pour tout } -1 < x < 1 \text{ (si on } x > 1)$$

prend $n_0 = 0$ la somme est $\frac{1}{1-x}$ pour tout -1 < x < 1).

Dans la suite, on supposera que $n_0=0$ et on notera souvent la série de fonctions $\sum_n f_n$.

On va commencer par étudier différents types de convergence d'une série de fonctions $\sum_n f_n$ sur $A \subset D$.

2.1 Types de Convergence d'une série de fonctions

2.1.1 Convergence simple et convergence absolue

Définition 2

(Convergence simple des séries de fonctions) On dit que la série de fonctions $\sum_n f_n$ converge simplement (CVS) sur $A \subset D$ si la suite de fonctions $(S_n)_{n \in \mathbb{N}}$ converge simplement sur A.

Définition 3

On suppose que la série $\sum_{n\geq 0}f_n$ converge simplement sur $A\subset D$. On note, pour $x\in A$, $S(x)=\lim_{n\to +\infty}S_n(x)$ de sorte que :

$$S(x) = \sum_{n=0}^{+\infty} f_n(x).$$

La fonction S, définie sur A, est appelée la somme de la série de fonctions $\sum_{n\geq 0} f_n$.

Pour $n \in \mathbb{N}$, on appelle le reste d'ordre n, la fonction $R_n : A \to \mathbb{K}$ définie pour tout $x \in A$ par

$$R_n(x) = \sum_{k=n+1}^{+\infty} f_k(x).$$

On a, pour tout $n \in \mathbb{N}$, $S = S_n + R_n$ et la suite de fonctions des restes $(R_n)_n$ converge simplement sur A vers la fonction nulle.

☆ Théorème 1

Soit $A \subset D$. On a équivalence entre

- 1. La série de fonctions $\sum_{n\geq 0} f_n$ converge simplement sur A,
- 2. Pour tout $x \in A$, la série numérique $\sum_{n \geq 0} f_n(x)$ converge.

Et on a dans ce cas, pour tout $x \in A$

$$\left(\sum_{n=0}^{+\infty} f_n\right)(x) = \sum_{n=0}^{+\infty} f_n(x).$$

Démonstration. La série de fonctions $\sum_n f_n$ converge simplement sur $A \Longleftrightarrow$ la suite de fonctions des sommes partielles $(S_n)_n$ CVS sur $A \Longleftrightarrow \forall x \in A$, la suite numérique $(S_n(x))_n = (\sum_{k=0}^n f_k(x))_n$ converge $\Longleftrightarrow \forall x \in A$, la série numérique $\sum_n f_n(x)$ converge. \square

Définition 4

On appelle **domaine de convergence (simple)** de la série de fonctions $\sum_n f_n$ l'ensemble des $x \in D$ tels que la série numérique $\sum_n f_n(x)$ converge.

Si la série de fonctions $\sum_n f_n$ converge simplement sur $A \subset D$, alors la suite de fonctions $(f_n)_n$ converge simplement vers la fonction nulle sur A.

Démonstration. Evident d'après le Théorème 1 et le fait que le terme général u_n d'une série numérique $\sum_n u_n$ convergente tend vers 0 quand $n \to +\infty$.

Attention!

La réciproque est fausse. La convergence simple de $(f_n)_n$ vers la fonction nulle sur A est une condition nécessaire mais pas suffisante pour avoir la convergence simple de $\sum_n f_n$ sur A.

Voici un contre-exemple :

Considérons la série de fonctions $\sum_{n\geq 1} f_n$ avec pour tout $n\geq 1$, $f_n:\mathbb{R}\to\mathbb{R}$ définie par

$$f_n(x) = \frac{x}{n} .$$

Soit $x_0 \in \mathbb{R}$. On a $\lim_n f_n(x_0) = 0$. Donc $(f_n)_n$ CVS vers la fonction nulle sur \mathbb{R} .

Notons que pour $x_0=0$, la série numérique $\sum_{n\geq 1} f_n(0)$ est la série nulle donc converge et que

pour tout $x_0 \neq 0$, $\sum_{n \geq 1} f_n(x_0)$ ne converge pas car $\sum_{n \geq 1} \frac{1}{n}$ série de Riemann avec $\alpha = 1$ donc diverge.

Le domaine de convergence de la série de fonctions $\sum_{n\geq 1} f_n$ est donc $\{0\}$.

Remarque 1

Contraposée de la Proposition 1: Si la suite de fonctions $(f_n)_n$ ne converge pas simplement vers la fonction nulle sur A, alors la série de fonctions $\sum_n f_n$ ne converge pas simplement sur A

Définition 5

(Convergence absolue des séries de fonctions) On dit que la série de fonctions $\sum_n f_n$ converge absolument (CVA) sur $A \subset D$ si pour tout $x \in A$, la série à termes positifs $\sum_n |f_n(x)|$ converge dans \mathbb{R} .

Autrement dit, la série de fonctions $\sum_n f_n$ converge absolument sur A si et seulement si la série de fonctions $\sum_n |f_n|$ converge simplement sur A.

CExemple :

Soit $n_0 \in \mathbb{N}$.

1. On considère pour tout $n \geq n_0$,

$$\begin{array}{cccc}
f_n & : & \mathbb{R} & \to & \mathbb{R} \\
 & x & \mapsto & x^n.
\end{array}$$

La série de fonctions $\sum_{n\geq n_0} f_n$ converge simplement et absolument sur]-1,1[(le domaine de convergence de cette série de fonctions est]-1,1[). De plus, la somme de la série de fonctions $\sum_{n\geq n_0} f_n$ sur]-1,1[est la fonction

$$S :]-1,1[\rightarrow \mathbb{R}$$

$$x \mapsto x^{n_0} \frac{1}{1-x}.$$

2. On considère cette fois pour tout $n \geq n_0$,

$$\begin{array}{cccc}
f_n & : & \mathbb{C} & \to & \mathbb{C} \\
 & z & \mapsto & z^n.
\end{array}$$

La série de fonctions $\sum_{n\geq n_0} f_n$ converge simplement et absolument sur

$$D(0,1) = \{ z \in \mathbb{C}; \ |z| < 1 \}.$$

Le domaine de convergence de cette série de fonctions est D(0,1) (voir TD0, Exercice 3).

De plus, la somme de la série de fonctions $\sum_{n\geq n_0} f_n$ sur D(0,1) est la fonction

$$S : D(0,1) \to \mathbb{C}$$

$$z \mapsto z^{n_0} \frac{1}{1-z}.$$

Si la série de fonctions $\sum_n f_n$ converge absolument sur $A \subset D$, alors elle converge simplement sur A.

2.1.2 Convergence uniforme

On va définir, comme pour les suites de fonctions, la convergence uniforme d'une série de fonctions $\sum_n f_n$ en utilisant la suite de fonctions des sommes partielles.

Définition 6

(Convergence uniforme des séries de fonctions) On dit que la série de fonctions $\sum_{n\geq 0} f_n$ converge uniformément (CVU) sur $A\subset D$ si la suite de fonctions $(S_n)_{n\in\mathbb{N}}$ (où $S_n=\sum_{k=0}^n f_k$) converge uniformément sur A.

Si la série de fonctions $\sum_n f_n$ converge uniformément sur $A \subset D$ alors elle converge simplement sur A.

Démonstration. Evidente car la convergence uniforme de la suite de fonctions $(S_n)_n$ sur A implique sa convergence simple sur A.

Si la série de fonctions $\sum_n f_n$ converge uniformément sur $A \subset D$ alors la suite de fonctions $(f_n)_n$ converge uniformément vers la fonction nulle sur A.

 $\begin{array}{ll} \textit{D\'{e}monstration.} \ \sum_n f_n \ \text{converge uniform\'{e}ment sur} \ A \subset D \iff (S_n)_{n \in \mathbb{N}} \ \text{converge uniform\'{e}ment sur} \ A \ \text{vers} \ S. \ \text{Comme pour tout} \ n \geq 1, \ f_n = S_n - S_{n-1}, \ \text{alors} \ (f_n)_n \ \text{converge uniform\'{e}ment vers} \ f = S - S = 0 \ \text{sur} \ A. \end{array}$

En effet, soit $\epsilon > 0$. Comme $(S_n)_{n \in \mathbb{N}}$ converge uniformément sur A vers S, alors

$$\exists N \in \mathbb{N}, \, \forall n \geq N, \, \forall x \in A, \, |S_n(x) - S(x)| < \frac{\epsilon}{2}.$$

Par suite, $\forall n \geq N_1 = N+1, \, \forall x \in A$,

$$|f_n(x)| = |S_n(x) - S(x) + S(x) - S_{n-1}(x)| \le |S_n(x) - S(x)| + |S(x) - S_{n-1}(x)| < \epsilon.$$

On a donc montré que

$$\forall \epsilon > 0, \exists N_1 \in \mathbb{N}, \forall n > N_1, \forall x \in A, |f_n(x)| < \epsilon$$

ce qui n'est autre que la convergence uniforme de $(f_n)_n$ vers la fonction nulle sur A. \square

Attention!

La réciproque est fausse. La convergence uniforme de $(f_n)_n$ vers la fonction nulle sur A est une condition nécessaire mais pas suffisante pour avoir la convergence uniforme de $\sum_n f_n$ sur A.

Voici un contre-exemple :

On considère la série de fonctions $\sum_{n\geq 1}f_n$ avec pour tout $n\geq 1$, $f_n:[0,1]\to\mathbb{R}$ définie par $f_n(x) = \frac{x}{n}$.

On a $\forall n \geq 1$, $\sup_{x \in [0,1]} |f_n(x)| = \frac{1}{n} \underset{n \to +\infty}{\longrightarrow} 0$ et donc $(f_n)_n$ CVU vers la fonction nulle sur [0,1].

Pourtant la série de fonctions ne converge pas uniformément sur [0,1] puisque elle ne converge pas simplement sur [0,1] (on a vu avant que $\sum_{x} f_n(x)$ ne converge qu'en x=0).

ightharpoonup **Proposition 5** Soit $A \subset D$. On a équivalence entre

- i) La série de fonctions $\sum_n f_n$ converge uniformément sur A
- ii) La série de fonctions $\sum_n f_n$ converge simplement sur A et la suite de fonctions des restes $(R_n)_n$ converge uniformément vers la fonction nulle sur A.

 $\textit{D\'{e}monstration.} \ \sum_n f_n \ \text{converge uniform\'{e}ment sur} \ A \Longleftrightarrow \exists S: A \to \mathbb{K} \ \text{tel que} \ (S_n)_n \ \text{CVU}$ $\operatorname{vers} S \operatorname{sur} A \overset{n}{\Longleftrightarrow} \exists S : A \to \mathbb{K} \operatorname{tel} \operatorname{que} (S_n)_n \operatorname{CVS} \operatorname{vers} S \operatorname{sur} A \operatorname{et} \sup_{x \in A} |S(x) - S_n(x)| =$ $\sup_{x\in A}|R_n(x)|\underset{n\to +\infty}{\to}0\Longleftrightarrow \text{ la série de fonctions }\sum_nf_n\text{ converge simplement sur }A\text{ et la suite}$ de fonctions $(R_n)_n$ converge uniformément vers la fonction nulle sur A.

Remarque 2

Pour étudier la CVU de la suite de fonctions $(R_n)_n$ vers la fonction nulle sur A, on utilise les méthodes vues dans le Chapitre 1 pour la CVU des suites de fonctions :

- i) pour montrer la CVU de $(R_n)_n$ vers la fonction nulle sur A, on peut majorer $|R_n(x)|$ pour tout $x \in A$ par un réel positif α_n , indépendant de x, avec $\alpha_n \underset{n \to +\infty}{\to} 0$.
- ii) pour montrer que $(R_n)_n$ ne converge pas uniformément vers la fonction nulle sur A, on cherche à trouver $(x_n)_n$ suite d'éléments de A tel que $|R_n(x_n)| \xrightarrow[n \to +\infty]{} 0$. Comme $\sup_{x \in A} |R_n(x)| \ge |R_n(x_n)|$ pour tout n, on déduit que $\sup_{x \in A} |R_n(x)| \overset{\rightarrow}{\underset{n \to +\infty}{\longrightarrow}} 0$.
- iii) On calcule exactement $\sup_{x\in A}|R_n(x)|$ (assez rare qu'on puisse le faire, on peut par exemple pour les séries géométriques convergentes) puis on voit si $\sup_{x\in A}|R_n(x)|$ tend ou ne tend pas vers 0 quand $n \to +\infty$.

(Critère de Cauchy uniforme) La série de fonctions $\sum_n f_n$ converge uniformément sur $A\subset D$ si et seulement si

$$\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall p > q \ge N, \forall x \in A, \left| \sum_{k=q+1}^{p} f_k(x) \right| < \epsilon.$$

 $\begin{array}{ll} \textit{D\'{e}monstration.} & \sum_n f_n \text{ converge uniform\'{e}ment sur } A \subset D \iff \text{la suite de fonctions } (S_n)_n \\ \text{converge uniform\'{e}ment sur } A \iff \text{la suite de fonctions } (S_n)_n \text{ v\'{e}rifie le crit\`ere de Cauchy uniforme sur } A \iff \end{array}$

$$\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall p > q \ge N, \forall x \in A, |S_p(x) - S_q(x)| = \left| \sum_{k=q+1}^p f_k(x) \right| < \epsilon.$$

♠ Proposition 7

(Rappel : Critère spécial séries alternées) Soit $\sum_{n\geq 0}u_n$ une série réelle alternée (càd $u_nu_{n+1}\leq 0$

 $\forall n \in \mathbb{N}$ ce qui est équivalent à dire que le signe de u_n change à chaque n ou que $((-1)^n u_n)_n$ est de signe constant).

Si $(|u_n|)_{n\in\mathbb{N}}$ est décroissante et converge vers 0, on a alors $\sum_n u_n$ converge . De plus, on a

$$\forall n \in \mathbb{N}, |R_n| = |\sum_{k=n+1}^{+\infty} u_k| \le |u_{n+1}|$$

et pour tout $n \in \mathbb{N}$, R_n est du même signe que u_{n+1} .

Démonstration. On va faire la démonstration quand u_n est du signe de $(-1)^n$ donc $u_0 \ge 0$, même principe si $u_0 \le 0$.

On va montrer que les sous-suites de sommes partielles $(v_n)_n = (S_{2n})_n$ et $(r_n)_n = (S_{2n+1})_n$ sont adjacentes. Plus précisément, on va montrer $(v_n)_n = (S_{2n})_n$ est décroissante et $(r_n)_n = (S_{2n+1})_n$ est croissante et que $\lim_n (S_{2n} - S_{2n+1}) = 0$.

Comme $(|u_n|)_n$ est décroissante, on a

 $\forall n \in \mathbb{N}, \ S_{2n+2} - S_{2n} = u_{2n+2} + u_{2n+1} = |u_{2n+2}| - |u_{2n+1}| \leq 0, \ \text{donc} \ (S_{2n})_n \ \text{est décroissante}$ et $\forall n \in \mathbb{N}, \ S_{2n+3} - S_{2n+1} = u_{2n+3} + u_{2n+2} = -|u_{2n+3}| + |u_{2n+2}| \geq 0, \ \text{donc} \ (S_{2n+1})_n \ \text{est croissante}.$

D'autre part, $S_{2n} - S_{2n+1} = -u_{2n+1}$ tend vers 0 quand $n \to +\infty$.

Donc les 2 suites $(S_{2n})_n$ et $(S_{2n+1})_n$ sont adjacentes (on a en particulier pour tout $p,q \in \mathbb{N}$,

 $r_p \leq v_q$) et convergent donc vers la même limite S. On déduit donc que la suite des sommes partielles $(S_n)_n$ converge vers S càd la série $\sum_n u_n$ converge.

Par monotonie, on a d'une part pour tout $n \in \mathbb{N}$, $S_{2n+1} \leq S \leq S_{2n}$ ce qui implique que $u_{2n+1} = S_{2n+1} - S_{2n} \leq R_{2n} = S - S_{2n} \leq 0$ et d'autre part, pour tout $n \in \mathbb{N}$, $S_{2n+1} \leq S \leq 1$ S_{2n+2} ce qui implique que $0 \le R_{2n+1} = S - S_{2n+1} \le S_{2n+2} - S_{2n+1} = u_{2n+2}$. On déduit alors que $|R_n| \le |u_{n+1}|$ pour tout $n \in \mathbb{N}$ et que R_n est du même signe que u_{n+1}

pour tout $n \in \mathbb{N}$.

☆ Théorème 2

(Critère de convergence uniforme pour les séries alternées) On suppose $D \subset \mathbb{R}$. Soit $\sum_n f_n$ une série de fonctions tel que pour tout $x \in A \subset D$,

 $\sum f_n(x)$ est une série alternée vérifiant le critère spécial des séries alternées (CSSA), càd $(|f_n(x)|)_n$ décroissante et converge vers 0.

Si on suppose de plus que $(f_n)_n$ converge uniformément vers la fonction nulle sur A, alors la série de fonctions $\sum_n f_n$ converge uniformément sur A.

Démonstration. D'après le critère spécial des séries alternées (CSSA), $\sum_n f_n(x)$ converge pour tout $x \in A$, donc $\sum_{n} f_n$ CVS sur A et on a de plus pour tout $n \in \mathbb{N}$

$$|R_n(x)| \le |f_{n+1}(x)|, \ \forall x \in A.$$
 (2.1)

Comme $(f_n)_n$ converge uniformément vers la fonction nulle sur A, l'inégalité (2.1) nous donne que la suite de fonctions $(R_n)_n$ CVU vers la fonction nulle sur A car

$$\forall n \in \mathbb{N}; \quad 0 \le \sup_{x \in A} |R_n(x)| \le \sup_{x \in A} |f_{n+1}(x)| \underset{n \to +\infty}{\to} 0.$$

Par suite, comme $\sum_n f_n$ CVS sur A et $(R_n)_n$ CVU vers la fonction nulle sur A, on déduit de la Proposition 5 que $\sum_{n} f_n$ CVU sur A.

2.1.3Convergence normale

Ø Définition 7

(Convergence normale des séries de fonctions) Soit $(f_n)_n$ une suite de fonctions de D à valeur dans \mathbb{K} tel que pour tout n, f_n est bornée.

On dit que la série de fonctions $\sum_n f_n$ converge normalement (CVN) sur $A\subset D$ si la série

numérique
$$\sum_n \|f_n\|_{\infty,A}$$
 converge, où $\|f_n\|_{\infty,A} = \sup_{x\in A} |f_n(x)|$.

Si la série de fonctions $\sum_n f_n$ converge normalement sur $A\subset D$ alors la suite de fonctions $(f_n)_n$ converge uniformément vers la fonction nulle sur A.

 $\begin{array}{ll} \textit{D\'{e}monstration.} & \text{\'{E}vidente car } \sum_n f_n \text{ CVN sur } A \Longleftrightarrow \sum_n \sup_{x \in A} |f_n(x)| \text{ converge et donc le terme} \\ \text{g\'{e}n\'{e}ral de cette s\'{e}rie num\'{e}rique } \sup_{x \in A} |f_n(x)| \underset{n \to +\infty}{\to} 0. \end{array}$

Attention!

La convergence uniforme de $(f_n)_n$ vers la fonction nulle sur A est une condition nécessaire mais pas suffisante pour avoir la convergence normale de $\sum_{n} f_n$ sur A.

En effet, considérons de nouveau par exemple la série de fonctions $\sum_{n\geq 1} f_n$ avec pour tout $n\geq 1$,

$$f_n:[0,1]\to\mathbb{R}$$
 définie par $f_n(x)=rac{x}{n}$.

On a $\forall n \geq 1$, $\sup_{x \in [0,1]} |f_n(x)| = \frac{1}{n} \underset{n \to +\infty}{\overset{\circ}{\to}} 0$ et donc $(f_n)_n$ CVU vers la fonction nulle sur [0,1].

Pourtant la série de fonctions ne converge pas normalement sur [0,1] car $\sum_{n>1}\sup_{x\in[0,1]}|f_n(x)|=$

$$\sum_{n\geq 1} \frac{1}{n} \text{ diverge.}$$

Théorème 3 Si la série de fonctions $\sum_n f_n$ converge normalement sur $A\subset D$, alors elle converge absolument sur A. De plus, elle converge uniformément sur A.

Démonstration. Montrons tout d'abord que $CVN \Longrightarrow CVA$. Supposons que $\sum_n f_n$ converge normalement sur $A \subset D$.

Soit
$$x \in A$$
. On a

$$\forall n \in \mathbb{N}, \ 0 \le |f_n(x)| \le ||f_n||_{\infty, A}. \tag{2.2}$$

Comme par définition de la convergence normale de $\sum_n f_n$, on a $\sum_n \|f_n\|_{\infty,A}$ converge, on déduit de (2.2) que $\sum_n |f_n(x)|$ converge pour tout $x \in A$. Par suite $\sum_n f_n$ converge absolument sur A.

Nous allons montrer maintenant que $CVN \Longrightarrow CVU$.

Supposons que $\sum f_n$ converge normalement sur $A\subset D$ alors par définition, la suite numérique $\left(\sum_{k=0}^{n}\sup_{x\in A}|f_k(x)|\right)$ est convergente et donc de Cauchy. On a donc,

$$\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall p > q \ge N, \left| \sum_{k=0}^p \sup_{x \in A} |f_k(x)| - \sum_{k=0}^q \sup_{x \in A} |f_k(x)| \right| = \sum_{k=q+1}^p \sup_{x \in A} |f_k(x)| < \epsilon.$$

Comme pour tout $x \in A$,

$$\left| \sum_{k=q+1}^{p} f_k(x) \right| \le \sum_{k=q+1}^{p} |f_k(x)| \le \sum_{k=q+1}^{p} \sup_{x \in A} |f_k(x)|,$$

on obtient alors

$$\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall p > q \ge N, \forall x \in A, \left| \sum_{k=q+1}^{p} f_k(x) \right| < \epsilon$$

Par suite, $\sum f_n$ vérifie le critère de Cauchy uniforme sur A et donc converge uniformément sur A (Proposition 6).

Remarque 3

On a donc

- 1. $CVN \Rightarrow CVA \Rightarrow CVS$.
- 2. $CVN \Rightarrow CVU \Rightarrow CVS$.
- 3. Toutes les autres implications sont fausses.

Exemple:

 $CVS \not\Rightarrow CVA$, $CVU \not\Rightarrow CVN$ et $CVU \not\Rightarrow CVA$. Considérons par exemple la série de fonctions $\sum_{n\geq 1} f_n$ avec pour tout $n\geq 1$, $f_n:\mathbb{R}^+\to\mathbb{R}$

définie par $f_n(x)=\frac{(-1)^n}{n+x}$ pour tout $x\in\mathbb{R}^+$. Pour tout $x_0\in\mathbb{R}^+$, $\sum_{n\geq 1}^- f_n(x_0)$ est une série alternée qui vérifie le CSSA (à vérifier) et donc

converge. Par suite, la série de fonctions $\sum_{n\geq 1} f_n$ CVS sur \mathbb{R}^+ .

D'après le CSSA, on a en plus $\forall n \in \mathbb{N}^*, \forall x \geq 0, |R_n(x)| \leq |f_{n+1}(x)|$ et donc

$$\forall n \in \mathbb{N}^*, \ 0 \le \sup_{x \in \mathbb{R}^+} |R_n(x)| \le \sup_{x \in \mathbb{R}^+} |f_{n+1}(x)|. \tag{2.3}$$

Comme $\forall n \geq 1$, $\sup_{x \in \mathbb{R}^+} |f_n(x)| = \frac{1}{n} \underset{n \to +\infty}{\to} 0$, on a alors $(f_n)_n$ converge uniformément vers la fonction nulle sur $\mathbb{R}^+.$ On déduit de (2.3) que $(R_n)_n$ converge uniformément aussi vers la fonction nulle sur \mathbb{R}^+ .

Par suite, $\sum_{n\geq 1} f_n$ converge uniformément sur $\mathbb{R}^+.$

Montrons maintenant que $\sum_{n\geq 1} f_n$ ne converge pas absolument sur $\mathbb{R}^+.$

Soit
$$x_0 \in \mathbb{R}^+$$
. On a $\forall n \geq 1$, $0 \leq |f_n(x_0)| = \frac{1}{n+x_0} \underset{+\infty}{\sim} \frac{1}{n}$.

Comme la série numérique $\sum_{n\geq 1} \frac{1}{n}$ diverge, on déduit que $\sum_{n\geq 1} |f_n(x_0)|$ diverge et donc $\sum_{n\geq 1} f_n$ ne converge pas absolument sur \mathbb{R}^+ ni sur aucune partie de \mathbb{R}^+ et donc $\sum_{n\geq 1} f_n$ ne converge pas non plus normalement sur \mathbb{R}^+ (on peut montrer la non convergence normale directement car $\forall n \geq 1$, $\sup_{x \in \mathbb{R}^+} |f_n(x)| = \sup_{x \in \mathbb{R}^+} \frac{1}{n+x} = |f_n(0)| = \frac{1}{n}$ et la série numérique $\sum_{n \geq 1} \frac{1}{n}$ diverge).

Exemple:

 $CVS \Rightarrow CVU$, $CVA \Rightarrow CVN$ et $CVA \Rightarrow CVU$.

Considérons par exemple la série de fonctions $\sum_n f_n$ avec $f_n:[0,1[\to \mathbb{R} \text{ avec } f_n(x)=x^n.$ $\sum_n f_n$ CVS et CVA sur [0,1[car pour tout $x\in[0,1[$, $\sum_n |x^n|=\sum_n x^n$ est une série géométrique de raison $x \in [0,1[$ donc convergente.

Montrons que $\sum_{n} f_n$ ne converge ni uniformément ni normalement sur [0,1[.

On a

$$\forall n \in \mathbb{N}, \sup_{x \in [0,1[} |f_n(x)| = \sup_{x \in [0,1[} x^n = 1 \underset{n \to +\infty}{\to} 1 \neq 0$$

et donc $(f_n)_n$ ne converge pas uniformément vers la fonction nulle sur [0,1[et par suite $\sum f_n$ ne converge ni uniformément ni normalement sur [0,1[.

Remarque 4

En pratique, pour étudier la convergence normale d'une série de fonctions $\sum_n f_n$ sur A, on procède souvent ainsi :

- i) si $\sup_{x\in A}|f_n(x)|\underset{n\to +\infty}{\nrightarrow} 0$ càd $(f_n)_n$ ne converge pas uniformément vers la fonction nulle sur A, alors $\sum_n f_n$ ne converge pas normalement sur A. Il suffit par exemple de trouver une suite $(x_n)_n$ d'éléments de A tel que $|f_n(x_n)|\underset{n\to +\infty}{\nrightarrow} 0$.
- ii) pour montrer la CVN de $\sum_n f_n$ sur A, on peut pour tout $n \in \mathbb{N}$, majorer $|f_n(x)|$ pour tout $x \in A$ par un réel positif a_n , indépendant de x, telle que la série à termes positifs $\sum_n a_n$ converge.
- iii) pour montrer que $\sum_n f_n$ ne converge pas normalement sur A, il suffit de trouver une suite $(x_n)_n$ d'éléments de A tel que $\sum_n |f_n(x_n)|$ diverge. Comme pour tout n, $\|f_n\|_{\infty,A} \geq |f_n(x_n)|$, on déduit que $\sum_n \|f_n\|_{\infty,A}$ diverge aussi.
- iv) Pour montrer ou nier la CVN de $\sum_n f_n$ sur A, on peut étudier pour tout $n \in \mathbb{N}$, les variations de la fonction f_n sur A pour trouver explicitement $\|f_n\|_{\infty,A}$ et déduire la nature de la série numérique $\sum_n \|f_n\|_{\infty,A}$. On peut s'assurer tout d'abord de la convergence simple de $\sum_n f_n$ avant le calcul éventuel de $\sup_{x \in A} |f_n(x)|$.

2.2 Régularité des sommes des séries de fonctions

Attention, comme pour les suites de fonctions, la convergence simple d'une série de fonctions $\sum_n f_n$ ne permet pas en général de préserver les propriétés de régularité des f_n (continuité, dérivabilité, intégrabilité...) pour la fonction somme S, ni d'intervertir limite et somme, somme et intégrale, somme et dérivée!

La question est donc : sous quelles conditions supplémentaires nous pourrons obtenir ces résultats ?

Nous verrons dans cette partie que la convergence uniforme des séries de fonctions nous permettra de conserver ces propriétés.

En effet, à l'aide des propriétés de régularité de la limite d'une suite de fonctions du Chapitre 1, nous allons montrer des propriétés similaires pour les (fonctions) sommes des séries de

fonctions : il suffit d'appliquer les résultats de régularité du Chapitre 1 à la suite de fonctions des sommes partielles $(S_n)_n$.

2.2.1 Interversion de limite et somme

☆ Théorème 4

Soit $(f_n)_{n\geq 0}$ une suite de fonctions de D vers $\mathbb K$ et $A\subset D$. Soit a un point adhérent à A ou $a=+\infty$ si $A\subset \mathbb R$ n'est pas majoré ou $-\infty$ si $A\subset \mathbb R$ n'est pas minoré. On suppose que

- i) pour tout $n \in \mathbb{N}$, la fonction f_n admet une limite finie en a, notée l_n ,
- ii) la série de fonctions $\sum_{n\geq 0} f_n$ converge uniformément sur A.

Alors la série numérique $\sum_n l_n$ converge et la fonction somme $S = \sum_{n=0}^{+\infty} f_n$ admet $\sum_{n=0}^{+\infty} l_n$ pour limite en a. Autrement dit, on peut intervertir limite et somme et on a

$$\lim_{x \to a} \left(\sum_{n=0}^{+\infty} f_n(x) \right) = \sum_{n=0}^{\infty} \left(\lim_{x \to a} f_n(x) \right).$$

Démonstration. La preuve découle directement du théorème de la double limite (Chapitre 1, Théorème 1) appliqué à la suite des sommes partielles $(S_n)_n$ (pour tout $n \in \mathbb{N}$, S_n admet une limite finie en a égale à $\sum_{k=0}^n l_k$).

Remarque 5

Bien justifier la CVU de la série de fonctions (généralement obtenue par CVN ou grâce à la majoration du reste associée au CSSA).

2.2.2 Convergence uniforme et continuité

Le théorème suivant découle du Théorème 4.

☆ Théorème 5

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions de D vers \mathbb{K} et $A\subset D$ tels que :

- i) $\forall n \in \mathbb{N}$, f_n est continue sur A.
- ii) la série de fonctions $\sum_{n\geq 0} f_n$ converge uniformément sur A.

Alors la fonction somme $S = \sum_{n=0}^{\infty} f_n$ est continue sur A.

15

★ Corollaire 1

On suppose que $D \subset \mathbb{R}$. Soit $(f_n)_n$ une suite de fonctions de D vers \mathbb{K} et I un intervalle de \mathbb{R} inclus dans D tels que

- i) $\forall n \in \mathbb{N}$, f_n est continue sur I,
- ii) la série de fonctions $\sum_n f_n$ converge uniformément sur tout segment de I,

Alors la fonction somme $S = \sum_{n=0}^{\infty} f_n$ est continue sur I.

 $\begin{array}{l} \textit{D\'{e}monstration.} \ \ \text{On applique le Th\'{e}or\`{e}me 5 sur } [a,b] \ \ \text{pour tout } a,b \in I, \ a < b. \ \ \text{On obtient alors que } S \ \ \text{est continue sur } [a,b] \ \ \text{pour tout } a,b \in I, \ a < b \ \ \text{et donc sur } \bigcup_{a,b \in I; a < b} [a,b] = I. \ \ \Box$

2.2.3 Intégration, dérivation

Dans cette partie, nous allons étudier les propriétés d'intégration et dérivation des (fonctions) sommes de séries de fonctions, mais cela ne concerne que les fonctions de $D \subset \mathbb{R}$ dans $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

Convergence uniforme et intégration

★ Théorème 6

(Interversion de somme-intégrale sur un segment) Soit $a,b \in \mathbb{R}$ tels que a < b et $(f_n)_n$ une suite de fonctions de [a,b] dans \mathbb{K} . On suppose que

- i) pour tout $n \in \mathbb{N}$, f_n est continue sur [a,b],
- ii) la série de fonctions $\sum_{n\geq 0} f_n$ converge uniformément sur [a,b].

Alors la série numérique $\sum_{n\geq 0} \int_a^b f_n(x) dx$ converge et on a

$$\sum_{n=0}^{+\infty} \left(\int_a^b f_n(x) dx \right) = \int_a^b \left(\sum_{n=0}^{+\infty} f_n(x) \right) dx.$$

Démonstration. On applique le théorème d'interversion de limite et intégrale pour les suites de fonctions (Chapitre 1, Théorème 3) à la suite des sommes partielles $(S_n)_n$ et on utilise la linéarité de l'intégrale.

Théorème d'intégration terme à terme

☆ Théorème 7

(Théorème d'intégration terme à terme, admis)

Soit I un intervalle de $\mathbb R$ et $(f_n)_{n\in\mathbb N}$ une suite de fonctions de I, intervalle de $\mathbb R$, à valeurs dans $\mathbb K$. On suppose que

- i) pour tout $n \in \mathbb{N}$, f_n est continue par morceaux et intégrable sur I,
- ii) la série de fonctions $\sum_{n} f_n$ converge simplement sur I vers une fonction S continue par morceaux (sur I),
- iii) La série numérique $\sum_{n\geq 0}\int_I |f_n(x)|dx$ converge.

Alors la fonction S est intégrable et on a

$$\int_I S(x) dx = \sum_{n=0}^{+\infty} \int_I f_n(x) dx \quad \text{i.e.} \quad \int_I \left(\sum_{n=0}^{+\infty} f_n\right)(x) dx = \sum_{n=0}^{+\infty} \int_I f_n(x) dx$$

Convergence uniforme et dérivation

☆ Théorème 8

(Séries de fonctions de classe C^1) Soit I un intervalle de \mathbb{R} et $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions de I vers \mathbb{K} . On suppose que

- i) pour tout $n \in \mathbb{N}$, f_n est de classe C^1 sur I,
- ii) la série de fonctions $\sum_n f_n$ converge simplement sur I (ou il existe $a \in I$ tel que $\sum_n f_n(a)$ converge),
- iii) la série de fonctions des dérivées $\sum_n f'_n$ converge uniformément sur I (ou sur tout segment de I).

Alors $S = \sum_{n=0}^{+\infty} f_n$ est de classe C^1 sur I et

$$S' := \left(\sum_{n=0}^{+\infty} f_n\right)' = \sum_{n=0}^{+\infty} f_n' \quad \text{sur } I$$

càd

$$\forall x \in I, \quad S'(x) := \left(\sum_{n=0}^{+\infty} f_n\right)'(x) = \sum_{n=0}^{+\infty} f'_n(x).$$

De plus, la série de fonctions $\sum_n f_n$ converge uniformément sur tout segment inclus dans I.

Démonstration. On applique les théorèmes de dérivation des suites de fonctions (Chapitre 1, Théorèmes 5 et 6) à la suite des sommes partielles $(S_n)_n$.

En réitérant le Théorème 8 pour calculer les dérivées d'ordre supérieur, on obtient le théorème suivant :

☆ Théorème 9

(Séries de fonctions de classe C^p) Soit I un intervalle de \mathbb{R} , $p \in \mathbb{N}^*$ et $(f_n)_{n \in \mathbb{N}}$ une suite de fonctions de I vers \mathbb{K} . On suppose que

- i) pour tout $n \in \mathbb{N}$, f_n est de classe C^p sur I,
- ii) pour tout k=0,1,...,p-1, la série de fonctions $\sum_n f_n^{(k)}$ converge simplement sur I,
- iii) la série de fonctions $\sum_n f_n^{(p)}$ converge uniformément sur I (ou sur tout segment de I).

Alors
$$S = \sum_{n=0}^{+\infty} f_n$$
 est de classe C^p sur I et on a

$$\forall k = 0, 1, ..., p,$$
 $S^{(k)} := \left(\sum_{n=0}^{+\infty} f_n\right)^{(k)} = \sum_{n=0}^{+\infty} f_n^{(k)} \quad \text{sur } I.$

Application aux théorèmes précédents dans les exercices suivants :

Exercice 1 Pour tout $n \in \mathbb{N}$, soit

$$f_n : \mathbb{R}^+ \to \mathbb{R}$$

$$x \mapsto \frac{e^{-nx}}{1+n^2}$$

- 1. a. Montrer que $\sum_n f_n$ converge normalement sur \mathbb{R}^+ .
 - b. En déduire que la fonction somme $S = \sum_{n=0}^{+\infty} f_n$ est continue sur \mathbb{R}^+ .
 - c. Montrer que $\lim_{x \to +\infty} S(x) = 1$ (utiliser le théorème d'interversion de somme et
- a. Montrer que $\sum_n f_n'$ converge normalement sur $[a,+\infty[,\ \forall a>0.$
 - b. En déduire que S est de classe C^1 sur $]0,+\infty[$ et que

$$\forall x > 0, \ S'(x) = -\sum_{n=0}^{+\infty} \frac{ne^{-nx}}{1+n^2}.$$

Correction de l'Exercice 1

- a. On a $\forall n \in \mathbb{N}$, $\sup_{x \in \mathbb{R}^+} |f_n(x)| = \frac{1}{1+n^2} \underset{+\infty}{\sim} \frac{1}{n^2}$ (car $y \to e^{-ny}$ est décroissante sur Comme $\sum_{n} \frac{1}{n^2}$ est une série de Riemann avec $\alpha=2>1$ donc convergente, on déduit que $\sum_n \sup_{x \in \mathbb{R}^+} |f_n(x)|$ converge et donc que $\sum_n f_n$ converge normalement sur \mathbb{R}^+ .
 - b. On a
 - i) $\forall n \in \mathbb{N}$, f_n est continue sur \mathbb{R}^+ car exponentielle est continue sur \mathbb{R} .
 - ii) D'après a), la série de fonctions $\sum_n f_n$ converge normalement sur \mathbb{R}^+ et donc en particulier elle converge uniformément sur \mathbb{R}^+ .

Par suite, d'après le Théorème 5, on déduit que $S = \sum_{n=0}^{+\infty} f_n$ est continue sur \mathbb{R}^+ .

c. On a \mathbb{R}^+ n'est pas majoré et

2.2. RÉGULARITÉ DES SOMMES DES SÉRIES DE FONCTIONS

19

- i) Soit $n\in\mathbb{N}$. - Si n=0, $f_0(x)=1$ pour tout $x\in\mathbb{R}^+$ et donc $\lim_{x\to+\infty}f_0(x)=1$ finie. - Si $n\geq 1$, $\lim_{x\to+\infty}f_n(x)=0$ finie.
- ii) D'après a), la série de fonctions $\sum_n f_n$ converge normalement sur \mathbb{R}^+ et donc en particulier elle converge uniformément sur \mathbb{R}^+ .

Par suite, d'après le Théorème d'interversion de somme et limite (Théorème 4), on a

$$\lim_{x \to +\infty} \left(\sum_{n=0}^{+\infty} f_n(x) \right) = \sum_{n=0}^{+\infty} \left(\lim_{x \to +\infty} f_n(x) \right)$$

et donc

$$\lim_{x \to +\infty} S(x) = 1 + \sum_{n=1}^{+\infty} 0 = 1.$$

2. Les f_n sont de classe C^1 sur \mathbb{R}^+ avec $\forall n \in \mathbb{N}$, $\forall x \geq 0$, $f'_n(x) = \frac{-ne^{-nx}}{1+n^2}$.

Remarque:

- i) Notons que $\sum_n f'_n(0)$ diverge et donc la série $\sum_n f'_n$ ne converge pas simplement sur \mathbb{R}^+ et donc ne converge ni uniformément ni normalement sur \mathbb{R}^+ .
- ii) Notons aussi que $\sum_n f'_n$ ne converge pas normalement sur $]0,+\infty[$ car $\sup_{x\in]0,+\infty[}|f'_n(x)|=\frac{n}{1+n^2}\underset{+\infty}{\sim}\frac{1}{n}$ et $\sum_{n\geq 1}\frac{1}{n}$ diverge.
- iii) On peut également montrer que $\sum_n f'_n$ ne converge pas uniformémement sur $]0,+\infty[$ en montrant que $\left|R_{1,n}(\frac{1}{n})\right|\underset{n\to+\infty}{\nrightarrow}0$ où $R_{1,n}(x)=\sum_{k=n+1}^{+\infty}f'_k(x).$
- a. Soit a>0. On a $\forall n\in\mathbb{N}$, $\sup_{x\in[a,+\infty[}|f_n'(x)|=\frac{ne^{-na}}{1+n^2}\underset{+\infty}{=}o(\frac{1}{n^2})$ (on a utilisé le fait que $y\to e^{-ny}$ est décroissante sur \mathbb{R}^+ et que $\lim_{n\to+\infty}n^2\frac{ne^{-na}}{1+n^2}=\lim_{n\to+\infty}ne^{-na}=0$ par croissance comparée donc $\frac{ne^{-na}}{1+n^2}\underset{+\infty}{=}o(\frac{1}{n^2})$).

Comme $\sum_{n\geq 1} \frac{1}{n^2}$ est une série de Riemann avec $\alpha=2>1$ donc convergente, on déduit que $\sum_n \sup_{x\in [a,+\infty[} |f_n'(x)|$ converge et donc que $\sum_n f_n'$ converge normalement sur $[a,+\infty[$.

- b. On a
 - i) Pour tout $n \in \mathbb{N}$, f_n est C^1 sur $]0, +\infty[$ car exponentielle est C^1 sur \mathbb{R} .
 - ii) $\sum_n f_n$ converge simplement sur $]0,+\infty[$ car d'après 1.a), $\sum_n f_n$ converge normalement sur \mathbb{R}^+ et donc en particulier simplement sur \mathbb{R}^+ et donc sur $]0,+\infty[\subset\mathbb{R}^+.$
 - iii) D'après 2.b), $\sum_n f'_n$ converge normalement sur tout intervalle $[a,+\infty[$ avec a>0 et donc en particulier elle converge uniformément sur $[a,+\infty[$ pour tout a>0. Par suite $\sum_n f'_n$ converge uniformément sur tout segment $[a,b]\subset [0,+\infty[$ (car pour tout $0< a< b< +\infty$, $[a,b]\subset [a,+\infty[$).

On déduit alors du Théorème 8, que S est de classe C^1 sur $]0,+\infty[$ et que pour tout x>0,

$$S'(x) = \sum_{n=0}^{+\infty} f'_n(x) = \sum_{n=0}^{+\infty} \frac{-ne^{-nx}}{1+n^2}.$$

★Exercice 2

Pour tout $n \in \mathbb{N}$, soit

$$\begin{array}{cccc} f_n & : & \mathbb{R} & \to & \mathbb{R} \\ & x & \mapsto & x^n \end{array}$$

- 1. Montrer que $\sum_{n} f_n$ converge normalement sur [-a, a] pour tout 0 < a < 1.
- 2. En déduire que $\forall a \in]-1,1[,\sum_{n=1}^{+\infty}\frac{a^n}{n}=-\ln(1-a).$

Correction de l'Exercice 2

- 1. Soit 0 < a < 1. On a $\forall n \in \mathbb{N}$, $\sup_{x \in [-a,a]} |f_n(x)| = \sup_{x \in [0,a]} x^n = a^n$ (car $x \to |x^n| = |x|^n$ est paire et est croissante sur \mathbb{R}^+). Comme $\sum_n a^n$ est une série géométrique de raison $0 \le q = a < 1$ donc convergente, on déduit que $\sum_n f_n$ converge normalement sur [-a,a] pour tout 0 < a < 1.
- 2. Soit -1 < a < 1. Trois cas :

a. Si
$$a = 0$$
, on a $\sum_{n=1}^{+\infty} \frac{0^n}{n} = 0 = -\ln(1-0)$.

- b. Si 0 < a < 1, on a
 - i) $\forall n \in \mathbb{N}$, f_n est continue sur [0, a].

ii) D'après 1), $\sum_n f_n$ converge normalement sur [-a,a] et donc en particulier elle converge uniformément sur [-a,a] et donc sur $[0,a]\subset [-a,a]$.

Par suite d'après le théorème d'interversion de somme et intégrale sur un segment (Théorème 6), on a

$$\sum_{n=0}^{+\infty} \left(\int_0^a f_n(x) dx \right) = \int_0^a \left(\sum_{n=0}^{+\infty} f_n(x) \right) dx$$

et donc

$$\sum_{n=0}^{+\infty} \left(\int_0^a x^n dx \right) = \int_0^a \left(\sum_{n=0}^{+\infty} x^n \right) dx.$$

On obtient alors

$$\sum_{n=0}^{+\infty} \frac{a^{n+1}}{n+1} = \int_0^a \frac{1}{1-x} dx$$

$$= [-\ln|1-x|]_{x=0}^{x=a}$$

$$= [-\ln(1-x)]_{x=0}^{x=a}$$

$$= -\ln(1-a).$$

Par suite,
$$\sum_{n=1}^{+\infty} \frac{a^n}{n} = -\ln(1-a)$$
 pour tout $0 < a < 1$.

c. si -1 < a < 0, on montre comme dans b., en travaillant cette fois sur le segment [a,0], que $\sum_{n=1}^{+\infty} \frac{a^n}{n} = -\ln(1-a)$.