Vrai ou Faux ? A propos du CM du 16/02

Analyse 4 23/02/2024

Vrai/Faux 1 - Image d'un ensemble

Soit $\|\cdot\|$ une norme sur \mathbb{R}^2 et $f:\mathbb{R}^2 \to \mathbb{R}$ définie par

$$\forall (x,y) \in \mathbb{R}^2, \quad f(x,y) = \|(x,y)\| + \cos(xy),$$

et $A = \{(x, y) \in \mathbb{R}^2 : 16x^4 + y^4 = 1\}$, alors f admet un maximum sur A.

Vrai/Faux 1 - Image d'un ensemble

Soit $\|\cdot\|$ une norme sur \mathbb{R}^2 et $f:\mathbb{R}^2\to\mathbb{R}$ définie par

$$\forall (x,y) \in \mathbb{R}^2, \quad f(x,y) = \|(x,y)\| + \cos(xy),$$

et $A = \{(x, y) \in \mathbb{R}^2 : 16x^4 + y^4 = 1\}$, alors f admet un maximum sur A. **VRAI**. C'est une application du théorème de Weierstrass :

- f est continue comme somme de fonctions continues ;
- A est compact car :
 - A est borné. En effet, $\forall (x, y) \in A$,

$$16x^4 \le 16x^4 + y^4 = 1$$
 et $y^4 \le 16x^4 + y^4 = 1$

et donc $x^4 \le \frac{1}{16}$ et $y^4 \le 1$, d'où $|x| \le \frac{1}{2}$ et $|y| \le 1$.

• A est fermé. En effet, soit $(x_k, y_k)_k \subset A$ qui converge vers (x, y), alors on a $\forall k \in \mathbb{N}$, $16x_k^4 + y_k^4 = 1$, et, par continuité de $(x, y) \mapsto 16x^4 + y^4$ et passage à la limite, on obtient $16x^4 + y^4 = 1$ et donc $(x, y) \in A$.

Ainsi, f continue atteint son maximum sur le compact A.

Vrai/Faux 2 - Définition

alors f est différentiable au point (1,2).

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ telle que, pour tout $h=(h_1,h_2)$, quand $h \to 0$, $f(1+h_1,2+h_2)=4h_2-6h_1-8+o\left(\sqrt{h_1^2+h_2^2}\right),$

Vrai-Faux 23/02/24

Vrai/Faux 2 - Définition

Soit $f:\mathbb{R}^2 o \mathbb{R}$ telle que, pour tout $h=(h_1,h_2)$, quand h o 0,

$$f(1+h_1,2+h_2)=4h_2-6h_1-8+o\left(\sqrt{h_1^2+h_2^2}\right),$$

alors f est différentiable au point (1,2).

VRAI. En effet, soit $x_0 = (1,2)$ et $h = (h_1, h_2)$, on a

$$f(x_0 + h) = f(x_0) + D_{x_0}f(h) + o(||h||_2)$$

avec

- $f(x_0) = f(1,2) = -8$,
- $(h_1, h_2) \mapsto -6h_1 + 4h_2$ est linéaire,

•
$$o\left(\sqrt{h_1^2+h_2^2}\right)=o(\|h\|_2),$$

donc f est différentiable de différentielle

$$D_{x_0}f:(h_1,h_2)\mapsto -6h_1+4h_2.$$

Vrai/Faux 3 - Valeur d'une différentielle à l'origine

Soit $f: \mathbb{R}^n \to \mathbb{R}^p$ différentiable, alors il existe $x_0 \in \mathbb{R}^n$ tel que $D_{x_0}f(0) \neq 0$.

Vrai/Faux 3 - Valeur d'une différentielle à l'origine

Soit $f:\mathbb{R}^n o \mathbb{R}^p$ différentiable, alors il existe $x_0 \in \mathbb{R}^n$ tel que $D_{x_0}f(0) \neq 0$.

FAUX. Si f est différentiable, alors pour tout $x \in \mathbb{R}^n$, $D_x f$ est une application linéaire, donc $D_x f(0) = 0$.

Vrai/Faux 4 - Calcul

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ telle que

$$\lim_{\stackrel{(h_1,h_2)\to(0,0)}{(h_1,h_2)\neq(0,0)}}\frac{\|f(h_1,-1+h_2)-f(0,-1)-h_1\|_2}{\sqrt{h_1^2+h_2^2}}=0$$

alors f est différentiable en (0, -1).

Vrai/Faux 4 - Calcul

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ telle que

$$\lim_{\stackrel{(h_1,h_2)\to(0,0)}{(h_1,h_2)\neq(0,0)}}\frac{\|f(h_1,-1+h_2)-f(0,-1)-h_1\|_2}{\sqrt{h_1^2+h_2^2}}=0$$

alors f est différentiable en (0, -1).

VRAI. En effet, pour montrer que f est différentiable en x_0 , il suffit de montrer qu'il existe une application linéaire L telle que

$$\lim_{\substack{h \to 0 \\ h \neq 0}} \frac{\|f(x_0 + h) - f(x_0) - L(h)\|_2}{\|h\|_2} = 0,$$

ce qui est le cas ici avec $x_0=(0,-1)$, puisque $x_0+h=(h_1,-1+h_2)$, et

$$L:(h_1,h_2)\mapsto h_1$$

est linéaire, donc f est différentiable en (0,-1) avec $D_{(0,-1)}f=L$.

Vrai-Faux 23/02/24