Remarque 3.12. D'après le résultat précédent, on voit que si f est linéaire, elle est nécessairement Lipschitzienne (et donc continue), c'est-à-dire qu'il existe k > 0 tel que pour tout $(x, y) \in \mathbb{R}^n \times \mathbb{R}^n$,

$$||f(x) - f(y)|| \le k||x - y||.$$

Le résultat suivant est obtenu automatiquement à partir de celui portant sur les opérations sur les limites de fonctions.

Proposition 3.13 (Opérations sur les fonctions continues). *Les sommes, produits, quotients (avec dénominateur non-nul) et composées de fonctions continues sont continues.*

Exemple 3.14. Considérons la fonction f définie par

$$f(x,y) = \begin{cases} \frac{x^5 + y^5}{x^4 + y^4} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0). \end{cases}$$

La fonction f est clairement continue comme quotient de fonctions continues sur $\mathbb{R}^2 \setminus \{(0,0)\}$ car $\forall (x,y) \in \mathbb{R}^2$, $x^4 + y^4 = 0 \iff x^4 = y^4 = 0 \iff x = y = 0$. Pour $(x,y) \neq (0,0)$, on a

$$0 \le |f(x,y)| \le \frac{|x|^5}{x^4 + y^4} + \frac{|y|^5}{x^4 + y^4} = |x| \frac{x^4}{x^4 + y^4} + |y| \frac{y^4}{x^4 + y^4} \le |x| + |y| = \|(x,y)\|_1 \to 0$$

quand $(x, y) \to (0, 0)$. Par comparaison, on a donc $\lim_{(x, y) \to (0, 0)} f(x, y) = 0 = f(0, 0)$. On en déduit donc que f est continue en (0, 0), et donc sur \mathbb{R}^2 .

On obtient aisément les résultats suivants portant sur les opérations sur les fonctions continues.

Proposition 3.15 (Caractérisation séquentielle des fonctions continues). Soit $f: E \subset \mathbb{R}^n \to \mathbb{R}^m$ et $x_0 \in E$. Alors f est continue en x_0 si et seulement si pour toute suite $(x_k)_k \subset E$ qui converge vers x_0 , on $a \lim_{k \to +\infty} f(x_k) = f(x_0)$.

Démonstration. (Exercice donné en CM / Preuve déjà faite en L1 pour m=n=1). Supposons que f est continue en x_0 et soit $(x_k)_k \subset E$ telle que $\lim_{k \to +\infty} x_k = x_0$. Montrons que $\lim_{k \to +\infty} f(x_k) = f(x_0)$, c'est-à-dire

$$\forall \varepsilon > 0$$
, $\exists N \in \mathbb{N}$, $\forall k \ge N$, $\| f(x_k) - f(x_0) \|_2 < \varepsilon$.

Nos hypothèses s'écrivent donc :

$$\begin{aligned} \forall \varepsilon > 0, \quad \exists \delta > 0, \quad \forall x \in E, \quad \|x - x_0\|_2 < \delta \Rightarrow \|f(x) - f(x_0)\|_2 < \varepsilon \quad & (f \text{ continue}) \\ \forall \varepsilon > 0, \quad \exists N \in \mathbb{N}, \quad \forall k \geq N, \quad \|x_k - x_0\|_2 < \varepsilon \quad & (x_k \to x_0). \end{aligned}$$

Soit $\varepsilon > 0$, alors par continuité de f, il existe $\delta > 0$ tel que pour tout $x \in E$, $||x - x_0|| < \delta \Rightarrow ||f(x) - f(x_0)||_2 < \varepsilon$. De plus, par convergence de la suite $(x_k)_k$, pour un tel $\delta > 0$ il existe $N \in \mathbb{N}$ tel que pour tout $k \ge N$, $||x_k - x_0|| < \delta$. Ceci implique que $||f(x_k) - f(x_0)|| < \varepsilon$ pour tout $k \ge N$ et on a montré que la suite $(f(x_k))_k$ converge vers $f(x_0)$.

Supposons maintenant que pour toute suite $(x_k)_k$ convergeant vers x_0 , la suite $(f(x_k))_k$ converge vers $f(x_0)$. Montrons que f est continue en x_0 . Raisonnons par l'absurde et supposons que f n'est pas continue en x_0 . Il existerait donc $\varepsilon > 0$ et $(x_k)_k$ telle que pour tout $k \ge 1$, $||x_k - x_0|| \le \frac{1}{k}$ et $||f(x_k) - f(x_0)|| \ge \varepsilon$, ce qui contredit l'hypothèse.

Exemple 3.16. Considérons la fonction f définie par

$$f(x,y) = \begin{cases} \frac{(x+y)^4}{x^4 + y^4} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0). \end{cases}$$

Soit $(x_k)_{k\geq 1}$ la suite définie par $x_k=\left(\frac{1}{k},\frac{1}{k}\right)$ et tendant vers (0,0) quand $k\to +\infty$. Alors on a

$$\lim_{k \to +\infty} f\left(\frac{1}{k}, \frac{1}{k}\right) = 8 \neq f(0, 0),$$

et ainsi f n'est pas continue en (0,0).

Alternativement, on passe en coordonnées polaires en posant $x = r \cos \theta$ et $y = \sin \theta$ avec r > 0 et $\theta \in [0, 2\pi[$, on obtient

$$f(x,y) = \frac{(r\cos\theta + r\sin\theta)^4}{r^4\cos^4\theta + r^4\sin^4\theta} = \frac{(\cos\theta + \sin\theta)^4}{\cos^4\theta + \sin^4\theta}$$

qui dépend de θ et ne tend pas vers 0 quand $r \to 0$. En effet, il suffit de choisir $\theta = 0$ et le quotient vaut $1 \neq 0$.

Théorème 3.17 (Weierstrass, théorème des bornes atteintes). Soit $f: E \subset \mathbb{R}^n \to \mathbb{R}^p$ une application continue et $K \subset E$ un compact $de \mathbb{R}^n$. Alors f(K) est un compact $de \mathbb{R}^p$. Ainsi, toute fonction continue $f: K \subset \mathbb{R}^n \to \mathbb{R}$ sur un ensemble compact K atteint ses bornes sur K.

Démonstration. Soit $K \subset E$ un compact de \mathbb{R}^n et $(y_k)_k \subset f(K)$. Montrons que $(y_k)_k$ admet une sous-suite convergente dans f(K). On sait qu'il existe une suite $(x_k)_k \subset K$ telle que, pour tout $k \in \mathbb{N}$, $y_k = f(x_k)$. Comme K est compact, $(x_k)_k$ admet une sous-suite $(x_{\varphi(k)})_k$ convergente vers $x \in K$. La suite $(f(x_{\varphi(k)}))_k$ est une sous-suite de $(y_k)_k$. Comme f est continue sur E, $(f(x_{\varphi(k)}))_k$ converge vers $y := f(x) \in f(K)$. On en déduit donc que f(K) est compact.

Supposons maintenant p=1. L'ensemble f(K) est un ensemble fermé et borné de \mathbb{R} . Comme il est non-vide car $K \neq \emptyset$ et borné, il admet donc une borne supérieure et une borne inférieure

$$m = \inf_{x \in K} f(x), \quad M = \sup_{x \in K} f(x).$$

Comme m et M sont des limites de suites de f(K) et que f(K) est fermé, $m = \min_{x \in K} f(x) \in f(K)$ et $M = \max_{x \in K} f(x) \in f(K)$ et f atteint donc ses bornes sur K.

Remarque 3.18. Le résultat est faux si *K* est seulement borné ou fermé.

Trouvez des contre-exemples!

Remarque 3.19. La réciproque est fausse, c'est-à-dire que le fait que l'image d'un compact soit compacte n'assure pas que f soit continue. On peut par exemple définir $f:[0,3] \to \mathbb{R}$ par

$$f(x) = \begin{cases} x & \text{si } 0 \le x < 1 \\ x - 1 & \text{si } 1 \le x \le 2 \\ x - 2 & \text{si } 2 < x \le 3 \end{cases}$$

Alors on a f([0,3]) = [0,1] mais f est discontinue en 1 et 2.

Remarque 3.20. L'image réciproque d'un compact par une application continue n'est pas nécessairement compacte!! En effet, soit $f : \mathbb{R} \to \mathbb{R}$, $x \mapsto \sin x$. Alors f est continue, [-1,1] est compact et $f^{-1}([-1,1]) = \mathbb{R}$ qui n'est pas compact.

Pour aller plus loin : En L3, vous verrez (mais on peut le démontrer facilement) que f est continue si et seulement si l'image réciproque de tout ouvert (fermé) est un ouvert (fermé).

Application : Une preuve rapide de l'équivalence des normes sur \mathbb{R}^n

Soit $\|\cdot\|$ une norme sur \mathbb{R}^n . Montrons que $\|\cdot\| \sim \|\cdot\|_{\infty}$. Ainsi, par transitivité, toute autre norme $\|\cdot\|'$ sera aussi équivalente à la norme infinie, et donc on aura $\|\cdot\| \sim \|\cdot\|'$.

Soit $x = (x_1, ..., x_n) \in \mathbb{R}^n$, alors on a, en notant $(e_1, ..., e_n)$ la base canonique de \mathbb{R}^n , en utilisant l'inégalité triangulaire,

$$||x|| = ||\sum_{i=1}^{n} x_i e_i|| \le \sum_{i=1}^{n} ||x_i e_i|| = \sum_{i=1}^{n} ||x_i|| ||e_i|| \le ||x||_{\infty} \sum_{i=1}^{n} ||e_i|| = M ||x||_{\infty},$$

en notant que $M = \sum_{i=1}^{n} \|e_i\|$ est indépendant de x.

Soit $S_{\infty} = \{x \in \mathbb{R}^n : \|x\|_{\infty} = 1\}$ la sphère unité pour la norme infinie. Alors S_{∞} est un compacte de \mathbb{R}^n en tant que fermé borné de \mathbb{R}^n pour la norme infinie. Soit $f: S_{\infty} \to \mathbb{R}_+$, $x \mapsto \|x\|$. Alors f est continue (c'est une norme restreinte à S_{∞}) et atteint donc son minimum m sur S_{∞} . Comme, pour tout $x \neq 0$, $\frac{x}{\|x\|_{\infty}} \in S_{\infty}$, on a

$$\left\|\frac{x}{\|x\|_{\infty}}\right\| \ge m,$$

et donc, par homogénéité de la norme, on obtient $||x|| \ge m||x||_{\infty}$. Cette inégalité est évidente pour x = 0.

On a donc montré que, pour tout $x \in \mathbb{R}^n$,

$$m\|x\|_{\infty} \le \|x\| \le M\|x\|_{\infty}$$

ce qui veut dire que $\|\cdot\| \sim \|\cdot\|_{\infty}$.

4 Ressentir la pente : les applications différentiables

On rappelle que si $I \neq \emptyset$ est un intervalle et x_0 est un point intérieur à I, une application $f: I \to \mathbb{R}$ est dérivable en x_0 si le quotient

$$\frac{f(x_0+h)-f(x_0)}{h} \quad (h \neq 0)$$

tend vers une limite finie $\ell = f'(x_0)$ lorsque $h \to 0$, ce qui s'écrit aussi : $\exists \ell \in \mathbb{R}, \forall h \in \mathbb{R}$ tel que $x_0 + h \in I$,

$$f(x_0 + h) = f(x_0) + \ell h + o(h),$$

ou bien, quand $x \to x_0$, en posant $x = x_0 + h$, $f(x) = f(x_0) + f'(x_0)(x - x_0) + o(x - x_0)$. Le nombre dérivée $f'(x_0)$ est alors le coefficient directeur de la tangente au graphe de f au point x_0 qui est elle-même d'équation

$$y = f(x_0) + f'(x_0)(x - x_0).$$

Remarque 4.1 (**Négligeabilité**). On rappelle que si $f: E \subset \mathbb{R}^n \to \mathbb{R}^p$, où $(0,...,0) \in \bar{E}$ et $N: E \to \mathbb{R}_+$ sont des applications, on dit que le vecteur f(x) est négligeable devant le réel N(x) au voisinage du point (0,...,0), et on écrit f(x) = o(N(x)) si

$$\forall \varepsilon > 0$$
, $\exists \delta > 0$, $\forall x \in E$, $\|x\|_2 < \delta \Rightarrow \|f(x)\|_2 \le \varepsilon N(x)$,

c'est-à-dire si $\lim_{x\to 0} \frac{\|f(x)\|_2}{N(x)} = 0.$

4.1 Définition de la différentiabilité et premiers exemples

Définition 4.2 (**Différentiabilité en un point**). Soit Ω un ouvert de \mathbb{R}^n , $x_0 \in \Omega$ et $f : \Omega \mapsto \mathbb{R}^p$ une application. On dit que f est différentiable au point x_0 s'il existe une application linéaire (continue) $L \in \mathcal{L}(\mathbb{R}^n; \mathbb{R}^p)$ telle que, pour tout $h \in \mathbb{R}^n$ satisfaisant $x_0 + h \in \Omega$, on ait, quand $h \to 0$,

$$f(x_0 + h) = f(x_0) + L(h) + o(\|h\|_2). \tag{4.1}$$

Remarque 4.3. Cette définition signifie que si f est différentiable en x_0 , alors on peut approcher au voisinage de x_0 l'accroissement $h \mapsto f(x_0 + h) - f(x_0)$ par une application linéaire L, au sens où la différence est négligeable devant $||h||_2$ lorsque $h \to 0$, c'est-à-dire

$$\lim_{\substack{h\to 0\\h\neq 0}} \frac{\|f(x_0+h)-f(x_0)-L(h)\|_2}{\|h\|_2} = 0.$$

L'égalité (4.1) peut aussi s'écrire

$$f(x_0 + h) = f(x_0) + L(h) + ||h||_2 \varepsilon(h), \text{ avec } \lim_{\substack{h \to 0 \\ h \neq 0}} ||\varepsilon(h)||_2 = 0.$$

Là encore, la notion de différentiabilité ne dépend pas de la norme choisie.

Proposition 4.4 (Unicité et notation). Soit Ω un ouvert de \mathbb{R}^n , $x_0 \in \Omega$ et $f : \Omega \mapsto \mathbb{R}^p$ une application. Si f est différentiable en x_0 , l'application linéaire L est unique et est appelée la différentielle de f en x_0 , notée $D_{x_0}f$, et on a ainsi, pour $h \to 0$ et $x_0 + h \in \Omega$,

$$f(x_0 + h) = f(x_0) + D_{x_0}f(h) + o(||h||_2).$$

Remarque 4.5. L'application $D_{x_0}f$ est aussi appelée l'application linéaire tangente de f en x_0 . Il est clair que $D_{x_0}f$ dépend du point $x_0!!$

Démonstration. Supposons qu'il existe deux applications linéaires L_1 et L_2 satisfaisant (4.1). Cela implique que $L_1(h) - L_2(h) = o(\|h\|_2)$. En particulier, pour h = tx où $t \in \mathbb{R}$ et $x \in \Omega \setminus \{0\}$, on obtient, par linéarité, quand $t \to 0$,

$$L_1(tx) - L_2(tx) = t(L_1 - L_2)(x) = o(||tx||) = o(|t|).$$

Ainsi, pour tout $x \in \Omega \setminus \{0\}$, $(L_1 - L_2)(x) = o(1)$ quand $t \to 0$, c'est-à-dire

$$\lim_{t\to 0} \|(L_1 - L_2)(x)\| = 0.$$

Or il est clair que $(L_1 - L_2)(x)$ ne dépend pas de t et il en découle que $(L_1 - L_2)(x) = 0$ pour tout $x \in \Omega \setminus \{0\}$, ce qui veut dire que $L_1(x) = L_2(x)$ pour tout $x \in \Omega \setminus \{0\}$ et donc, par linéarité, pour tout $x \in \mathbb{R}^n \setminus \{0\}$. Comme l'égalité est aussi vraie pour x = 0, on en déduit que $L_1 = L_2$, d'où l'unicité de la différentielle.

Remarque 4.6 (Lien avec la dérivabilité). Si $f: \Omega \to \mathbb{R}$ où $\Omega \subset \mathbb{R}$ est un ouvert et $x_0 \in \Omega$, alors f est différentiable en x_0 si et seulement si f est dérivable en x_0 . La différentielle de f en x_0 est donnée par

$$D_{x_0}f(h)=hf'(x_0),$$

c'est-à-dire que $f'(x_0) = D_{x_0}f(1)$. De plus, on remarque que l'application $h \mapsto D_{x_0}f(h)$ est bien linéaire!

Ainsi, la différentiabilité est une généralisation de la dérivabilité.

Définition 4.7 (Application différentiable). Soit $\Omega \subset \mathbb{R}^n$ un ouvert et $f : \Omega \to \mathbb{R}^p$. On dit que f est différentiable sur Ω si f est différentiable en tout point de Ω . On appelle alors différentielle de f l'application, notée Df et définie par

$$Df: \left\{ \begin{array}{l} \Omega \to \mathcal{L}(\mathbb{R}^n; \mathbb{R}^p) \\ x \mapsto D_x f. \end{array} \right.$$

Exemple 4.8. (Carré de la norme euclidienne)

Soit $f: \mathbb{R}^n \to \mathbb{R}$ définie pour tout $x \in \mathbb{R}^n$ par

$$f(x) = \|x\|_2^2.$$

Alors il est facile de montrer que, pour tout $x \in \mathbb{R}^n$ et tout $h \in \mathbb{R}^n$,

$$f(x+h) = \|x+h\|_2^2 = \|x\|_2^2 + 2\sum_{i=1}^n x_i h_i + \|h\|_2^2 = \|x\|_2^2 + 2\langle x, h \rangle + \|h\|_2^2,$$

où $\langle x, h \rangle$ designe le produit scalaire euclidien entre les vecteurs x et h. Comme $f(x) = \|x\|_2^2$ et $\|h\|_2^2 = o(\|h\|_2)$ quand $h \to 0$, il en découle que

$$f(x+h) = f(x) + 2\langle x, h \rangle + o(\|h\|_2).$$

L'application $h \mapsto 2\langle x, h \rangle$ est clairement linéaire, ce qui veut dire que la différentielle de f au point x appliquée au vecteur h est donnée par

$$D_x f(h) = 2\langle x, h \rangle$$
.

Proposition 4.9 (Différentiable implique continue). *Soit* $f : \Omega \subset \mathbb{R}^n \to \mathbb{R}^p$, Ω *ouvert, et* $x_0 \in \Omega$. *Si* f *est différentiable en* x_0 , *alors* f *est continue en* x_0 .

Démonstration. Si f est différentiable en x_0 , alors, pour tout $h \in \mathbb{R}^n$ tel que $x_0 + h \in \Omega$ et $h \to 0$, on a

$$||f(x_0+h)-f(x_0)||_2 = ||D_{x_0}f(h)+o(||h||_2)||_2 \le ||D_{x_0}f(h)||_2 + ||o(||h||_2)||_2 \to 0$$

par continuité de la norme et de $D_{x_0}f$. Ainsi, $\lim_{h\to 0} \|f(x_0+h)-f(x_0)\|_2 = 0$ et donc f est continue en x_0 .

On donne maintenant des résultats concernant les applications linéaires et bilinéaires.

Proposition 4.10 (Différentiabilité et linéarité). On a :

• Soit $f: \mathbb{R}^n \to \mathbb{R}^p$ une application linéaire. Alors f est différentiable et pour tout $x \in \mathbb{R}^n$, on a

$$D_x f = f$$
.

• Soit $f: \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^m$ une application bilinéaire. Alors f est différentiable sur $\mathbb{R}^n \times \mathbb{R}^p$ et pour tout $(x, y) \in \mathbb{R}^n \times \mathbb{R}^p$ et tout $(h, k) \in \mathbb{R}^n \times \mathbb{R}^p$, on a

$$D_{(x,y)}f(h,k) = f(x,k) + f(h,y).$$

Démonstration. Soit $f \in \mathcal{L}(\mathbb{R}^n; \mathbb{R}^p)$ une application linéaire, alors

$$\forall (x,h) \in (\mathbb{R}^n)^2$$
, $f(x+h) = f(x) + f(h)$,

avec $h \mapsto f(h)$ linéaire, donc f est effectivement différentiable au point x et

$$D_x f(h) = f(h),$$

c'est-à-dire que la différentielle $D_f: \mathbb{R}^n \to \mathcal{L}(\mathbb{R}^n; \mathbb{R}^p)$ de f est donnée par

$$D_f: x \mapsto f$$
.

On munit $\mathbb{R}^n \times \mathbb{R}^p$ de la norme infinie définie pour tout $u = (x, y) \in \mathbb{R}^n \times \mathbb{R}^p$ par $||u||_{\infty} = \max(||x||_2, ||y||_2)$. On a donc, par bilinéarité, pour tout $(x, y) \in \mathbb{R}^n \times \mathbb{R}^p$ et tout $(h, k) \in \mathbb{R}^n \times \mathbb{R}^p$:

$$f(x+h, y+k) = f(x, y) + f(x, k) + f(h, y) + f(h, k).$$

Montrons que $f(h,k) = o(\|(h,k)\|_{\infty})$ (comme les normes sont équivalentes, on aura aussi $o(\|(h,k)\|_2)$. Comme f est continue (car bilinéaire en dimension finie), il existe M > 0 tel que (même preuve que pour la linéarité)

$$||f(h,k)||_{\infty} \le M||h||_2||k||_2 \le M||(h,k)||_{\infty}^2.$$

Ainsi, pour $(h, k) \neq (0, 0)$, on a

$$\frac{\|f(h,k)\|_{\infty}}{\|(h,k)\|_{\infty}} \le M \|(h,k)\|_{\infty} \to 0$$

quand $(h, k) \to (0, 0)$, c'est-à-dire $f(h, k) = o(\|(h, k)\|_{\infty})$. De plus, l'application de $\mathbb{R}^n \times \mathbb{R}^p$ dans \mathbb{R}^m donnée, pour (x, y) fixés, par

$$(h, k) \mapsto f(x, k) + f(h, y)$$

est linéaire : c'est donc la différentielle de f au point (x, y), ce qui conclut la preuve.

Exemple 4.11. (Application linéaire)

Soit $f: \mathbb{R}^2 \to \mathbb{R}^3$ définie pour tout $(x, y) \in \mathbb{R}^2$ par

$$f(x, y) = (2x + 5y, -y + x, 3x - 9y),$$

alors f est une application linéaire et, pour tout $(x, y) \in \mathbb{R}^2$ et $(h_1, h_2) \in \mathbb{R}^2$,

$$D_{(x,y)}f(h_1,h_2) = f(h_1,h_2) = (2h_1 + 5h_2, -h_2 + h_1, 3h_1 - 9h_2).$$

Exemple 4.12. (Produit scalaire euclidien)

Considérons l'application $f: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ définie pour tout $(x, y) \in \mathbb{R}^n \times \mathbb{R}^n$ par

$$f(x, y) = \langle x, y \rangle = \sum_{i=1}^{n} x_i y_i.$$

Alors f est bilinéaire et sa différentielle au point (x, y) est donnée par

$$\forall (h, k) \in (\mathbb{R}^n)^2$$
, $D_{(x, y)} f(h, k) = \langle x, k \rangle + \langle h, y \rangle$.

Proposition 4.13 (Différentielle et applications à valeurs dans un espace produit). $Soit \Omega \subset \mathbb{R}^n$ un ouvert et $f: \Omega \to \mathbb{R}^{p_1} \times ... \times \mathbb{R}^{p_k}$ définie pour tout $x \in \Omega$ par

$$f(x) = (f_1(x), ..., f_k(x)).$$

Alors f est différentiable en $x_0 \in \Omega$ si et seulement si les fonctions $f_1, ..., f_k$ le sont. Dans ce cas, la différentielle de f en x_0 est donnée en fonction des différentielles des fonctions f_k en x_0 par la formule

$$D_{x_0}f: h \mapsto D_{x_0}f(h) = \left(D_{x_0}f_1(h), ..., D_{x_0}f_k(h)\right).$$

Démonstration. Exercice.

Proposition 4.14 (Différentielle et applications définies sur un espace produit). $Soit \Omega \subset \mathbb{R}^{p_1} \times ... \times \mathbb{R}^{p_k}$ un ouvert et $f: \Omega \mapsto \mathbb{R}^p$ définie pour tout $x \in \Omega$ par

$$f(x) = f(x_1, ..., x_k).$$

Alors, si f est différentiable sur Ω on a

$$\forall (h_1,...,h_k) \in \mathbb{R}^{p_1} \times ... \times \mathbb{R}^{p_k}, \quad D_x f(h_1,...,h_k) = \sum_{i=1}^k D_{x_i} f(h_i),$$

où, pour tout $1 \le i \le k$, $D_{x_i} f(h_i) = D_x f(0,...,h_i,0,...,0)$ définit la différentielle partielle de f suivant la i-ème coordonnée.

Remarque 4.15. Attention : la différentiabilité des applications partielles $x_i \mapsto f(x_1, ..., x_n)$ n'implique pas la différentiabilité de f!

De plus, la notation $D_{x_i}f$ doit être vue comme abusive. Il s'agit de la différentielle de l'application f suivant la variable x_i , donc une application linéaire de \mathbb{R} dans \mathbb{R}^p .