Définition 6.5 (Matrice/forme quadratique (définie) positive). Soit $q : \mathbb{R}^n \to \mathbb{R}$ une forme quadratique et $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ sa matrice symétrique réelle associée. On dit que

- q et A sont positives $si \forall x \in \mathbb{R}^n$, $q(x) = \langle Ax, x \rangle \ge 0$;
- q et A sont définies positives si $\forall x \in \mathbb{R}^n \setminus \{0\}, q(x) = \langle Ax, x \rangle > 0$;
- q et A sont (définies) négatives si -q et -A sont (définies) positives.

Remarque 6.6. On rappelle que, pour tout $x \in \mathbb{R}^n$ et toute matrice $A \in \mathcal{M}_n(\mathbb{R})$, ${}^t x A x = \langle Ax, x \rangle$.

Proposition 6.7 (La hessienne est diagonalisable). Soit Ω un ouvert de \mathbb{R}^n , $x_0 \in \Omega$ et $f : \Omega \to \mathbb{R}$ deux fois différentiable en x_0 . Alors $H_f(x_0)$ est diagonalisable.

Démonstration. C'est évident car $H_f(x_0)$ est une matrice symétrique réelle, donc diagonalisable.

Proposition 6.8 (Positivité et valeurs propres). Une matrice A symétrique réelle est (définie) positive si et seulement si toutes ses valeurs propres sont (strictement) positives.

Démonstration. La matrice A est symétrique réelle, donc diagonalisable. Soit $(\lambda_1,...,\lambda_n)$ les valeurs propres de A (comptées sans leur multiplicité). Soit $(u_1,...,u_n)$ une base orthonormée de vecteurs propres de A, alors pour tout $x \in \mathbb{R}^n$, on a $x = \sum_{i=1}^n x_i u_i$ avec $(x_1,...,x_n) \in \mathbb{R}^n$, et ainsi, comme, pour tout $(i,j) \in \{1,...,n\}^2$, $\langle u_i,u_j \rangle = \delta_{i,j}$, on a

$$\langle Ax, x \rangle = \left\langle \sum_{i=1}^{n} x_i \lambda_i u_i, \sum_{i=1}^{n} x_i u_i \right\rangle = \left\langle \lambda_1 x_1 u_1 + \dots + \lambda_n x_n u_n, x_1 u_1 + \dots + x_n u_n \right\rangle = \sum_{i=1}^{k} \lambda_i x_i^2$$

On a donc

$$\forall x \in \mathbb{R}^n, \langle Ax, x \rangle \ge 0 \iff \forall 1 \le i \le n, \lambda_i \ge 0,$$

ainsi que

$$\forall x \in \mathbb{R}^n \setminus \{0\}, \langle Ax, x \rangle > 0 \iff \forall 1 \le i \le n, \lambda_i > 0.$$

Proposition 6.9 (Condition nécessaire d'ordre 2 pour un extremum). Soit $f : E \subset \mathbb{R}^n \to \mathbb{R}$. Si x_0 est un point intérieur à E, f est deux fois différentiable en x_0 et x_0 est un point critique de f, alors :

- 1. si f admet en x_0 un minimum local, alors la forme quadratique $h \mapsto D_{x_0}^2 f(h, h)$ (et donc $H_f(x_0)$) est positive.
- 2. si f admet en x_0 un maximum local, alors la forme quadratique $h \mapsto D^2_{x_0} f(h, h)$ (et donc $H_f(x_0)$) est négative.

Remarque 6.10 (Point selle). Si la forme quadratique $h \mapsto D_{x_0}^2 f(h, h)$ (ou la matrice $H_f(x_0)$) n'est ni positive, ni négative, le point x_0 n'est ni un maximum, ni un minimum de f. On dit que x_0 est un point selle (ou un col) de f.

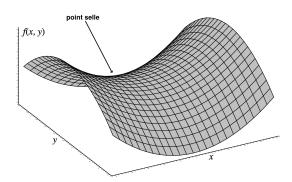


FIGURE 12: Exemple de point selle

Démonstration. Supposons que f admette un minimum local en x_0 . Alors pour tout $h \in \mathbb{R}^n$ et $t \in \mathbb{R}$ tel que $x_0 + th \in E$, on a

$$f(x_0 + th) \ge f(x_0).$$

Supposons que $D_{x_0}^2 f \neq 0$, sinon le résultat est évident car $H_f(x_0)$ sera à la fois positive et négative. Alors, comme f est deux fois différentiable en $x_0 \in \mathring{E}$, d'après la formule de Taylor-Young à l'ordre 2, on a, comme $o(\|th\|^2) = o(\|h\|^2 t^2) = o(t^2)$ quand $t \to 0$,

$$f(x_0+th)=f(x_0)+tD_{x_0}f(h)+\frac{t^2}{2}D_{x_0}^2f(h,h)+o(t^2)=f(x_0)+\frac{t^2}{2}D_{x_0}^2f(h,h)+o(t^2).$$

Ainsi, quand t est suffisamment petit, le signe de $f(x_0 + th) - f(x_0)$ est celui de $D_{x_0}^2 f(h, h)$, et donc $D_{x_0}^2 f$ est positive. On montre de façon anologue le deuxième point, dans le cas d'un maximum local.

Lemme 6.11 (Forme quadratique définie positive et première valeur propre). Soit $q : \mathbb{R}^n \to \mathbb{R}$ une forme quadratique définie positive, A sa matrice associée et λ_1 la plus petite valeur propre de A. Alors on a

$$\inf_{\substack{x \in \mathbb{R}^n, \\ \|x\|_2 = 1}} \langle Ax, x \rangle = \lambda_1.$$

Démonstration. Considérons une base orthonormée $(u_1,...,u_n)$ de vecteurs propres de A. Quitte à renuméroter, on suppose que les valeurs propres de A (comptées sans leur multiplicité) sont $\lambda_1 \leq ... \leq \lambda_n$. Pour tout $x \in \mathbb{R}^n \setminus \{0\}$, on peut écrire $x = \sum_{i=1}^n x_i u_i$ et donc $\langle Ax, x \rangle = \sum_{i=1}^n \lambda_i x_i^2$. On obtient pour tout $x \in \mathbb{R}^n$ tel que $\|x\|_2 = 1$, c'est-à-dire $\sum_{i=1}^n x_i^2 = 1$,

$$\langle Ax, x \rangle = \sum_{i=1}^{n} \lambda_i x_i^2 \ge \lambda_1 \sum_{i=1}^{n} x_i^2 = \lambda_1,$$

atteint pour x = (1, 0, ..., 0), ce qui prouve le résultat souhaité.

Proposition 6.12 (Condition suffisante d'ordre 2 pour un extremum local). Soit $f: E \subset \mathbb{R}^n \to \mathbb{R}$. Si x_0 est un point intérieur à E, f est deux fois différentiable en x_0 et x_0 est un point critique de f, alors:

- 1. si la forme quadratique $h \mapsto D_{x_0}^2 f(h, h)$ (ou bien $H_f(x_0)$) est définie positive, alors f admet un minimum local en x_0 .
- 2. si la forme quadratique $h \mapsto D_{x_0}^2 f(h, h)$ (ou bien $H_f(x_0)$) est définie négative, alors f admet un maximum local en x_0 .

Démonstration. Supposons que $h \mapsto D^2_{x_0} f(h,h)$ soit définie positive. Les valeurs propres de la matrice hessienne $H_f(x_0)$ sont donc toutes strictement positives. Soit λ_1 la plus petite de ces valeurs propres, alors d'après le lemme précédent, on a

$$\inf_{h \in \mathbb{R}^n : ||h||_2 = 1} D_{x_0}^2 f(h, h) = \lambda_1.$$

Or, d'après la formule de Taylor-Young à l'ordre 2, on a, avec ε une fonction de limite nulle quand $h \to 0$,

$$f(x_0+h)-f(x_0)=\frac{1}{2}D_{x_0}^2f(h,h)+\|h\|_2^2\varepsilon(h)=\|h\|_2^2\left(\frac{1}{2}D_{x_0}^2f\left(\frac{h}{\|h\|_2},\frac{h}{\|h\|_2}\right)+\varepsilon(h)\right).$$

Ainsi, si $h \neq 0$ est suffisamment petit, $|\varepsilon(h)| \leq \frac{\lambda_1}{2}$ et donc, comme $\frac{h}{\|h\|_2} \in S_{\|\cdot\|_2}(0,1)$,

$$f(x_0+h)-f(x_0)=\|h\|_2^2\left(\frac{1}{2}D_{x_0}^2f\left(\frac{h}{\|h\|_2},\frac{h}{\|h\|_2}\right)+\varepsilon(h)\right)\geq \|h\|_2^2\left(\frac{1}{2}D_{x_0}^2f\left(\frac{h}{\|h\|_2},\frac{h}{\|h\|_2}\right)-\frac{\lambda_1}{2}\right)\geq 0,$$

ce qui veut dire que f admet un minimum local en x_0 . On démontre de manière analogue le cas du maximum local.