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II.1 Bases orthogonales

Soit pE, x¨, ¨yq un espace euclidien.
Définitions.

a) On dit que x, y P E sont orthogonaux si xx, yy “ 0.

b) Une base orthogonale de E est une base pe1, ..., enq telle que @i ‰ j, xei, ejy “ 0.

c) Une base orthonormale ou orthonormée de E est une base pe1, ..., enq telle que
@ i ‰ j, xei, ejy “ 0, @ i, xei, eiy “ 1.

Théorème. Si E est un espace euclidien, alors E admet une base orthogonale.
En particulier E admet une base orthonormale.

Exercices.

1) (Théorème de Pythagore) Soient x, y P E. Montrer que xx, yy “ 0 ô ||x`y||2 “
||x||2 ` ||y||2.

2) Soit pe1, ..., enq une famille de vecteurs de E telle que @ i ‰ j, xei, ejy “ 0.
Vérifier que les ei sont linéairement indépendants.

3) Trouver une base orthonormale pour E “ tpx, y, zq P �3 : x` y ` z “ 0u avec
le produit scalaire usuel.

II.2 Procédé de Gram-Schmidt

Théorème. Soit E un espace euclidien de base pe1, ..., enq. Il existe une unique
base pf1, ..., fnq de E telle que

(i) @ 1 ď i ď n, fi “ ei mod xe1, ..., ei´1y ;

(ii) la base pf1, ..., fnq est orthogonale.

Démo. On définit par récurrence :

f1 “ e1, @ i ą 1, fi “ ei ´
i´1ÿ

k“1

xei, fky
xfk, fkyfk .

Remarques. En particulier, la base p f1
||f1|| , ...,

fn
||fn||q est orthonormale.

Exercices.

a) Si e1, ..., enq est une base orthonormale de E, alors @x “ x1e1 ` ...`xnen, y “
y1e1 ` ... ` ynen P E, xx, yy “ x1y1 ` ... ` xnyn.
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b) Appliquer le procédé de Gram-Schmidt à la base pe0, e1, e2, e3, e4q “ p1, X,X2, X3, X4q
de�rXsď4 avec le produit scalaire xf, gy “ ş1

´1
fptqgptq?

1´t2
dt “ şπ

0
fpcos xqgpcospxqqdx.

f0 “ e0 “ 1, f1 “ e1 ´ xe1,f0y
xf0,f0yf0 “ X ´

şπ
0 cosxdxşπ

0 dx
1 “ X, f2 “ e2 ´ xe2,f1y

xf1,f1yf1 ´
xe2,f0y
xf0,f0yf0 “ X2´

şπ
0 cos3 xdxşπ
0 cos2 xdx

X´
şπ
0 cos2 xdxşπ

0 dx
1 “ X2´ 1

2
, f3 “ e3´ xe3,f2y

xf2,f2yf2´ xe3,f1y
xf1,f1yf1´

xe3,f0y
xf0,f0yf0 “ X3 ´

şπ
0 cos3 xpcos2 x´ 1

2
qdxşπ

0 pcos2 x´ 1
2

q2dx pX2 ´ 1
2
q ´

şπ
0 cos4 xdxşπ
0 cos2 xdx

X ´
şπ
0 cos3 xdxşπ

0 dx
1 “ X3 ´

3
4
X, f4 “ e4´ xe4,f3y

xf3,f3yf3´ xe4,f2y
xf2,f2yf2´ xe4,f1y

xf1,f1yf1´ xe4,f0y
xf0,f0yf0 “ X4´

şπ
0 cos4 xpcos3 x´ 3

4
cosxqdxşπ

0 pcos3 x´ 3
4
cosxq2dx pX3´

3
4
Xq ´

şπ
0 cos4 xpcos2 x´ 1

2
qdxşπ

0 pcos2 x´ 1
2

q2dx pX2 ´ 1
2
q ´

şπ
0 cos5 xdxşπ
0 cos2 xdx

X ´
şπ
0 cos4 xdxşπ

0 dx
1 “ X4 ´ X2 ` 1

8
X .

c) Soit A P Snp�q. Montrer que la forme bilinéaire symétrique associée φA est
un produit scalaire ô @ 1 ď i ď n, ∆ipAq “ detpAαβq1ďα,βďi ą 0.

Indication. Soit Ai “ pAαβq1ďα,βďi. Noter b “ pe1, ..., enq la base canonique de
�

n. Appliquer le procédé de Gram-Schmidt aux vecteurs e1, ..., en et obtenir une
base b1 “ pf1, ..., fnq orthogonale pour φA. Alors Ai “ rφAspe1,...eiq “ tPiDiPi

où Pi est la matrice de passage de la base pf1, ..., fiq dans la base pe1, ..., eiq
qui est triangulaire supérieure avec des 1 sur la diagonale et Di est la matrice
de φA dans la base pf1, ..., fiq qui est diagonale car la base pf1, ...q est orthogo-
nale. Donc , Di “ diagpφApf1, f1q, ...,φApfi, fiqq ñ ∆ipAq “ pdetPiq2 detDi “
detDi “ φApf1, f1q...φApfi, fiq ... On obtient en particulier @ i, φApfi, fiq “
∆ipAq

∆i´1pAq .

Exemple. La matrice symétrique A “

¨
˚̊
˚̊
˚̊
˝

2 ´1 0 0

´1 2 ´1 0

0 ´1 2 ´1

0 0 ´1 2

˛
‹‹‹‹‹‹‚

définit un produit

scalaire car ∆1pAq “ 2, ∆2pAq “ 3, ∆3pAq “ 4, ∆4pAq “ 5 ą 0.
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