Cours d'algèbre bilinéaire

I Formes bilinéaires

I.0 Produit scalaire usuel

C'est l'application $\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$, $(x,y) \mapsto x \cdot y$ où si $x = (x_1,...,x_n)$, $y = (y_1,...,y_n)$, $x \cdot y = x_1y_1 + ... + x_ny_n$.

Proposition.

- i) $\forall x \in \mathbb{R}^n, \mathbb{R}^n \to \mathbb{R}, y \mapsto x \cdot y$ est linéaire.
- ii) $\forall y \in \mathbb{R}^n, \mathbb{R}^n \to \mathbb{R}, x \mapsto x \cdot y$ est linéaire.
- iii) $\forall x, y \in \mathbb{R}^n, x \cdot y = y \cdot x.$
- iv) $\forall 0 \neq x \in \mathbb{R}^n, x \cdot x > 0.$

Notation. Si $x \in \mathbb{R}^n$, soit $||x||_2 = \sqrt{x \cdot x}$.

Théorème de Cauchy-Schwarz. $\forall x, y \in \mathbb{R}^n, |x \cdot y| \leq ||x||_2||y||_2$. $D\acute{e}mo. \ \forall \ a,b \in \mathbb{R}, \ |ab| \leq \frac{a^2+b^2}{2}$.

I.1 Formes bilinéaires

Définitions. Soit E un \mathbb{R} -espace vectoriel.

- Une forme bilinéaire sur E est une application $b: E \times E \to \mathbb{R}$ telle que
 - $-\forall x \in E, b(x,\cdot) : E \to \mathbb{R}$ est linéaire;
 - $\forall y \in E, b(\cdot, y) : E \to \mathbb{R}$ aussi.
- On dit que b est symétrique si $\forall x, y \in E$, b(x, y) = b(y, x). On dit que b est antisymétrique si $\forall x, y \in E$, b(x, y) = -b(y, x).

Notations. Soient BL(E), resp. BLS(E), resp. BLA(E), l'ensemble des formes bilinéaires sur E, resp. des formes bilinéaires symétriques, resp. l'ensemble des formes bilinéaires antisymétriques.

Exercices.

- 1) L'ensemble BL(E) est un \mathbb{R} —espace vectoriel pour les lois ordinaires et $BL(E) = BLS(E) \oplus BLA(E)$.
- 2) Polarisation.
 - i) Soit $b \in BLS(E)$. Alors $\forall x, y \in \mathbb{R}^n$, $b(x, y) = \frac{1}{2}(b(x+y, x+y) b(x, x) b(y, y))$.

ii) Soit $b \in BL(E)$. Alors b antisymétrique $\Leftrightarrow b$ alternée \dagger . Exemples.

- a) Les applications suivantes sont bilinéaires symétriques.
 - $-\mathbb{R}^n \times \mathbb{R}^n, (x,y) \mapsto x \cdot y;$
 - $--\mathcal{M}_n(\mathbb{R}) \times \mathcal{M}_n(\mathbb{R}) \to \mathbb{R}, (A, B) \mapsto \operatorname{Tr} AB;$
 - $-l_2(\mathbb{N}) \times l_2(\mathbb{N}) \to \mathbb{R}, ((a_n), (b_n)) \mapsto \sum_{n \geq 0} a_n b_n;$
 - $-\mathcal{M}_2(\mathbb{R}) \times \mathcal{M}_2(\mathbb{R}) \to \mathbb{R}, (A, B) \mapsto \det(A + B) \det A \det B;$
 - $-- \mathcal{C}^0([-1,1],\mathbb{R}) \times \mathcal{C}^0([-1,1],\mathbb{R}) \to \mathbb{R}, (f,g) \mapsto \int_{-1}^1 fg.$
- b) L'application $\mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$, $((x_1, x_2), (y_1, y_2)) \mapsto x_1y_2 x_2y_1$ est bilinéaire antisymétrique.
- c) L'application $\mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$, $((x_1, x_2), (y_1, y_2)) \mapsto x_1 y_2$ est bilinéaire mais ni symétrique ni antisymétrique.

I.2 Matrices

Définition. Soit $A \in \mathcal{M}_n(\mathbb{R})$. L'application

$$\varphi_A: \mathcal{M}_{n1}(\mathbb{R}) \times \mathcal{M}_{n1}(\mathbb{R}) \to \mathbb{R}, (X,Y) \mapsto {}^tXAY$$

est bilinéaire.

Exercice. L'application φ_A est symétrique \Leftrightarrow la matrice A est symétrique. L'application φ_A est antisymétrique \Leftrightarrow la matrice A est antisymétrique.

Notations. Soient
$$\mathscr{S}_n(\mathbb{R}) = \{A \in \mathscr{M}_n(\mathbb{R}) : {}^t A = A\}, \mathscr{A}_n(\mathbb{R}) = \{A \in \mathscr{M}_n(\mathbb{R}) : {}^t A = -A\}.$$

Définition. Matrice d'une forme bilinéaire. Soit $\mathscr{B} = (e_1, ..., e_n)$ une base d'un \mathbb{R} -espace vectoriel E. Si $\varphi \in BL(E)$, on pose $[\varphi]_{\mathscr{B}} = (\varphi(e_i, e_j))_{1 \le i,j \le n}$.

Proposition. Avec les notations de la définition.

$$\forall x = x_1 e_1 + ... + x_n e_n, \ \forall y = y_1 e_1 + ... + y_n e_n, \ \varphi(x, y) = 4XAY$$

où
$$A = [\varphi]_{\mathscr{B}}, X = {}^{t}(x_1, ..., x_n), Y = {}^{t}(y_1, ..., y_n) \in \mathscr{M}_{n1}(\mathbb{R}).$$

On en déduit le

Théorème. Soit E un \mathbb{R} —espace vectoriel de dimension n, de base \mathscr{B} . Alors l'application $\varphi \mapsto [\varphi]_{\mathscr{B}}$ définit des isomorphismes d'espaces vectoriels :

$$BL(E) \simeq \mathscr{M}_n(\mathbb{R})$$

^{†.} c-à- $d \forall x \in E, b(x, x) = 0.$

$$BLS(E) \simeq \mathscr{S}_n(\mathbb{R})$$

$$BLA(E) \simeq \mathscr{A}_n(\mathbb{R})$$
.

Exemple. Soit $E = \mathbb{R}[x]_{\leq 2}$. Soit $\mathscr{B} = (1, x, x^2)$. Soit $\mathscr{B}' = (1, x, 2x^2 - 1)$. Soit $\varphi : E \times E \to \mathbb{R}, (f, g) \mapsto \int_{-1}^{1} \frac{f(x)g(x)}{\sqrt{1-x^2}} dx = \int_{0}^{\pi} f(\cos t)g(\cos t)dt$. Alors

$$[\varphi]_{\mathscr{B}} = \begin{pmatrix} \pi & 0 & \frac{\pi}{2} \\ 0 & \frac{\pi}{2} & 0 \\ \frac{\pi}{2} & 0 & \frac{3\pi}{8} \end{pmatrix}, [\varphi]_{\mathscr{B}'} = \begin{pmatrix} \pi & 0 & 0 \\ 0 & \frac{\pi}{2} & 0 \\ 0 & 0 & \frac{\pi}{2} \end{pmatrix}.$$

I.3 Formules de changement de bases et congruence des matrices

Proposition. Soit E un \mathbb{R} -espace vectoriel de dimension n. Soient \mathscr{B} , \mathscr{B}' deux bases de E. Soit $\varphi \in BL(E)$. Si $A = [\varphi]_{\mathscr{B}}$, $A' = [\varphi]_{\mathscr{B}'}$, $P = P_{\mathscr{B},\mathscr{B}'}$, alors

$$A' = {}^t P A P$$
.

Définition. On dit que $A, A' \in \mathcal{M}_n(\mathbb{R})$ sont congruentes si $A' = {}^tPAP$ pour une matrice $P \in \mathcal{M}_n(\mathbb{R})$ inversible.

Théorème. Classes de congruences des matrices symétriques et antisymétriques réelles.

i) Soit $A \in \mathscr{S}_n(\mathbb{R})$. Il existe des entiers $r, s \ge 0$ et une matrice inversible $P \in$

^{†.} c-à-d si $\mathcal{B}=(e_1,...,e_n), \mathcal{B}'=(e_1',...,e_n'),$ alors $P=(p_{ij})_{1\leqslant i,j\leqslant n}$ où \forall $1\leqslant j\leqslant n,$ $e_j'=\sum_{i=1}^n p_{ij}e_i$; c'est la matrice de passage de la base \mathcal{B} dans la base \mathcal{B}' .

 $\mathcal{M}_n(\mathbb{R})$ tels que

$${}^{t}PAP = \begin{pmatrix} 1 & & & & & & & & \\ & \ddots & & & & & & & \\ & & 1 & & & & & & \\ & & & -1 & & & & \\ & & & \ddots & & & & \\ & & & & -1 & & & \\ & & & & 0 & & & \\ & & & & \ddots & & \\ & & & & 0 \end{pmatrix}$$

matrice diagonale avec $r \ll 1$ » et $s \ll -1$ ». De plus, r + s = rgA.

ii) Soit $A \in \mathcal{A}_n(\mathbb{R})$. Alors $\operatorname{rg} A = 2d$ est pair et il existe une matrice inversible P telle que

$${}^{t}PAP = \begin{pmatrix} J & & & & \\ & \ddots & & & \\ & & J & & \\ & & & 0 & \\ & & & \ddots & \\ & & & 0 \end{pmatrix}$$

matrice diagonale par blocs avec d blocs $J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ de taille 2×2 .

Démo. Plus tard dans le cours.

I.4 Noyau et rang d'une forme bilinéaire symétrique

Définitions. Soit E un \mathbb{R} -espace vectoriel. Soit $\varphi \in BLS(E) \cup BLA(E)$.

- Le noyau de φ est ker $\varphi = \{x \in E : \forall y \in E, \varphi(x,y) = 0.$
- Le rang de φ , noté rg φ , est la dimension de l'image de l'application linéaire $\gamma_{\varphi}: E \to E^*, \ x \mapsto \varphi(x,\cdot)^{\dagger}$.

^{†.} On note $E^* = \mathcal{L}(E, \mathbb{R})$.

— On dit que φ est non dégénérée si $\ker \varphi = 0$.

Remarque. Si E est un \mathbb{R} -espace vectoriel de dimension n et de base \mathscr{B} , si on note \mathscr{B}^* la base duale de E^* , alors $[\varphi]_{\mathscr{B}} = [\gamma_{\varphi}]_{\mathscr{B},\mathscr{B}^*} \in \mathscr{M}_n(\mathbb{R})$.

Théorème du rang pour les formes bilinéaires symétriques et antisymétriques. Soit E un \mathbb{R} -espace vectoriel de dimension n. Soit $\varphi \in BLS(E) \cup BLA(E)$. Alors :

$$n = \dim \ker \varphi + \operatorname{rg} \varphi .$$

I.5 Produits scalaires

Définitions. Soit $\varphi \in BLS(E)$.

- On dit que φ est positive si $\forall x \in E, \varphi(x, x) \geq 0$.
- On dit que φ est définie positive $si \ \forall \ 0 \neq x \in E, \ \varphi(x,x) > 0.$

Un produit scalaire sur E est une forme bilinéaire symétrique et définie positive $\varphi \in BL(E)$.

Exemple. Le produit scalaire usuel est un produit scalaire. Exercices.

- 1) $(A, B) \mapsto \operatorname{Tr}(AB)$ est un produit scalaire sur $\mathscr{S}_n(\mathbb{R})$.
- 2) $(A, B) \mapsto -\text{Tr}(AB)$ est un produit scalaire sur $\mathscr{A}_n(\mathbb{R})$.

I.6 Inégalité de Cauchy-Schwarz

Soit $\langle \cdot, \cdot \rangle$ un produit scalaire sur un \mathbb{R} -espace vectoriel E.

Notation. pour tout $x \in E$, soit $||x|| = \sqrt{\langle x, x \rangle}$.

Théorème. Soient $x, y \in E$.

- i) $|\langle x, y \rangle| \leq ||x|| ||y||$;
- ii) Si $|\langle x, y \rangle| = ||x||||y||$, alors x, y sont liés.

Démo. Lemme. Si $A \in \mathcal{S}_2(\mathbb{R})$, alors A est diagonalisable.

Corollaire. L'application $E \to \mathbb{R}_{\geq 0}$, $x \mapsto ||x||$ est une norme.

Exercice. Identité du prallélogramme. $\forall x,y \in E, ||x+y||^2 + ||x-y||^2 = 2||x||^2 + 2||y||^2.$

I.7 Produit scalaire hermitien

Soit E un \mathbb{C} -espace vectoriel.

Définitions.

a) On dit que l'application $E \times E \to \mathbb{C}$, $(x,y) \mapsto \langle x,y \rangle$ est une forme sesquilinéaire si

- (i) $\forall x \in E, E \to \mathbb{C}, y \mapsto \langle x, y \rangle$ est linéaire;
- (ii) $\forall y \in E, E \to \mathbb{C}, x \mapsto \langle x, y \rangle \text{ est } antilinéaire^{\dagger};$
- b) on dit que c'est une forme sesquilinéaire hermitienne si de plus

(iii)
$$\forall x, y \in E, \langle x, y \rangle = \overline{\langle y, x \rangle}$$
;

c) on dit que c'est un produit scalaire hermitien si de plus

$$(iv) \ \forall \ x \in E, \langle x, x \rangle > 0.$$

Exemples.

- a) $(x,y) \mapsto \sum_{i=1}^n \overline{x_i} y_i$ est une forme hermitienne sur \mathbb{C}^n .
- b) $(f,g) \mapsto \int_{-1}^{1} \overline{f}g$ est une forme hermitienne sur $\mathbb{C}[X]$.

 Exercices.
- 1) Notons $\langle x, y \rangle = \alpha(x, y) + i\beta(x, y)$ avec $\alpha(x, y)$, $\beta(x, y) \in \mathbb{R}$ pour tous $x, y \in E$. Vérifier que $\langle \cdot, \cdot \rangle$ est une forme sesquilinéaire hermitienne $\Leftrightarrow \alpha$ est bilinéaire symétrique et β est bilinéaire antisymétrique.
- 2) Soit $A \in \mathcal{M}_n(\mathbb{C})$. Vérifier que $\mathcal{M}_{n1}(\mathbb{C}) \times \mathcal{M}_{n1}(\mathbb{C}) \to \mathbb{C}$, $(X,Y) \mapsto {}^t XAY$ est une forme sesquilinéaire hermitienne $\Leftrightarrow {}^t \overline{A} = A$.

II Espaces euclidiens

Définitions.

- Un espace préhilbertien est un couple $(E, \langle \cdot, \cdot \rangle)$ où E est un \mathbb{R} —espace vectoriel et $\langle \cdot, \cdot \rangle$ un produit scalaire sur E.
- Un espace euclidien est un couple $(E, \langle \cdot, \cdot \rangle)$ où E est un \mathbb{R} —espace vectoriel de dimension finie et $\langle \cdot, \cdot \rangle$ un produit scalaire sur E.

Exemple. \mathbb{R}^n avec le produit scalaire usuel.

 $[\]dagger. \ \ c-\grave{a}-d \ \forall \ x,x' \in E, \ \langle x+x',y \rangle = \langle x,y \rangle + \langle x',y \rangle, \ \forall \ x \in E, \ \forall \ t \in \mathbb{C}, \ \langle tx,y \rangle = \overline{t} \langle x,y \rangle.$

II.1 Bases orthogonales

Soit $(E, \langle \cdot, \cdot \rangle)$ un espace euclidien.

Définitions.

- a) On dit que $x, y \in E$ sont orthogonaux si $\langle x, y \rangle = 0$.
- b) Une base orthogonale de E est une base $(e_1, ..., e_n)$ telle que $\forall i \neq j, \langle e_i, e_j \rangle = 0$.
- c) Une base orthonormale ou orthonormée de E est une base $(e_1, ..., e_n)$ telle que $\forall i \neq j, \langle e_i, e_j \rangle = 0, \forall i, \langle e_i, e_i \rangle = 1.$

Théorème. Si E est un espace euclidien, alors E admet une base orthogonale. En particulier E admet une base orthonormale.

Exercices.

- 1) (Théorème de Pythagore) Soient $x, y \in E$. Montrer que $\langle x, y \rangle = 0 \Leftrightarrow ||x+y||^2 = ||x||^2 + ||y||^2$.
- 2) Soit $(e_1, ..., e_n)$ une famille de vecteurs de E telle que $\forall i \neq j, \langle e_i, e_j \rangle = 0$. Vérifier que les e_i sont linéairement indépendants.
- 3) Trouver une base orthonormale pour $E = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\}$ avec le produit scalaire usuel.

II.2 Procédé de Gram-Schmidt

Théorème. Soit E un espace euclidien de base $(e_1, ..., e_n)$. Il existe une unique base $(f_1, ..., f_n)$ de E telle que

- (i) $\forall 1 \leq i \leq n, f_i = e_i \mod \langle e_1, ..., e_{i-1} \rangle;$
- (ii) la base $(f_1, ..., f_n)$ est orthogonale.

Démo. On définit par récurrence :

$$f_1 = e_1, \ \forall \ i > 1, \ f_i = e_i - \sum_{k=1}^{i-1} \frac{\langle e_i, f_k \rangle}{\langle f_k, f_k \rangle} f_k$$
.

Remarques. En particulier, la base $(\frac{f_1}{||f_1||},...,\frac{f_n}{||f_n||})$ est orthonormale. Exercices.

a) Appliquer le procédé de Gram-Schmidt à la base $(1, X, X^2, X^3, X^4)$ de $\mathbb{R}[X]_{\leq 4}$ avec le produit scalaire $\langle f, g \rangle = \int_{-1}^{1} \frac{f(t)g(t)}{\sqrt{1-t^2}} dt$.

b) Soit $A \in \mathscr{S}_n(\mathbb{R})$. Montrer que la forme bilinéaire symétrique associée φ_A est un produit scalaire $\Leftrightarrow \forall 1 \leqslant i \leqslant n, \Delta_i(A) = \det(A_{\alpha\beta})_{1 \leqslant \alpha, \beta \leqslant i} > 0$. Indication. Noter $c_1, ..., c_n$ les colonnes de A. Appliquer le procédé de Gram-Schmidt aux vecteurs $c_1, ..., c_n$ et obtenir une famille de vecteurs $f_1, ..., f_n$ tels que $\forall i, \varphi_A(f_1, f_1)...\varphi_A(f_i, f_i) = \Delta_i(A)$...