Université Claude Bernard Lyon 1

ANALYSE2 INFO, printemps 2024

Fiche TD n°2,

Suites récurrentes

Exercice : Exercices d'importance particulière, fait en SolEx.

Exercice : Fait pendant le TD

Exercice: Partie soulignée faite pendant le TD

Exercice: A faire à la maison/pour votre entraînement.

Exercice*: Pour ceux qui sont intéressés, mais pas nécessaires pour la réussite dans cet UE.

Exercice pour s'échauffer

Exercice 1. Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels. Vrai ou faux :

- 1. Si $(u_n)_{n\in\mathbb{N}}$ converge vers ℓ , alors $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ convergent vers ℓ .
- 2. Si $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ convergent, alors $(u_n)_{n\in\mathbb{N}}$ converge.
- 3. Si $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ convergent vers une même limite ℓ , alors $(u_n)_{n\in\mathbb{N}}$ converge vers ℓ .
- 4. Si $(u_n)_{n\in\mathbb{N}}$ est croissante et $(u_{2n})_{n\in\mathbb{N}}$ converge, alors $(u_n)_{n\in\mathbb{N}}$ converge.

Exercice 2. Soit $(u_n)_{n\in\mathbb{N}}$ une suite géométrique de raison $q\in\mathbb{R}$.

- 1. Pour quelles valeurs de q converge-t-elle?
- 2. Pour quelles valeurs de q admet-t-elle une limite $l \in \mathbb{R} \cup \{\infty\} \cup \{-\infty\}$?
- 3. Pour quelles valeurs de q est-elle croissante, pour lesquelles est-elle décroissante?
- 4. Pour quelles valeurs de q est-elle alternante?

Suites récurrentes d'ordre 1

Dans tous les exercices suivants, on considère des suites $(u_n)_{n\in\mathbb{N}}$ définies récursivement avec une récursion d'ordre 1 :

$$u_{n+1} = f(u_n), \quad n \in \mathbb{N}.$$

Dans chaque exercice, la fonction f sera spécifiée et la valeur initiale u_0 sera donnée.

Nous remarquons que pour que la récursion soit bien définie, il est important qu'il existe un intervalle I contenant u_0 qui soit stable par $f: u_0 \in I$ et $f(I) \subset I$. Même si parfois il n'est pas demandé de chercher un tel intervalle I, il est essentiel qu'il existe.

Exercice 3. Soit $p \in \mathbb{R}$.

- 1. Trouver l'unique fonction $f: \mathbb{R} \to \mathbb{R}$ qui passe par le point (p, p) et dont le graphe est une droite de pente $k \in \mathbb{R} \setminus \{0, 1\}$.
- 2. Trouver tous les points fixes de la fonction f. Quelles sont les limites possibles pour u_n a priori?

- 3. Déterminer graphiquement le comportement de la séquence récursive correspondante, en fonction des valeurs de u_0 , p et k.
 - (Déterminer, uniquement en utilisant la méthode graphique, pour quelles valeurs des trois constantes la séquence (u_n) sera strictement croissante, pour lesquelles on trouvera $\lim_{n\to\infty} u_n = -\infty$, et dans quel cas il n'y aura pas de limite.)
- 4. Pour quelles valeurs de p et k la fonction f est-elle contractante? Conclure sur la convergence de la suite (u_n) en utilisant le théorème du point fixe. Quelle est sa limite et quelle est la vitesse de convergence?
- 5. Déterminer la limite de (u_n) pour k > 1 selon la valeur initiale u_0 .
- 6. Que peut-on dire de la suite si k < -1, selon la valeur de u_0 ?
- 7. Définir une nouvelle séquence (v_n) au moyen de $v_n := u_n p$. Montrer qu'il s'agit d'une suite géométrique et comparez les résultats obtenus ici avec ceux trouvés dans l'Exercice 2.

Exercice 4.

Étudier la convergence et calculer l'éventuelle limite de chacune des suites récurrentes définies par :

- 1. $f(x) = \frac{1}{6}x + 5$, $u_0 = 3$.
- 2. f(x) = -2x + 1, $u_0 = 0$.
- 3. $f(x) = \frac{1}{2}x + 3$, $u_0 = 8$.

Exercice* 5. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=1$ et la relation de récurrence

$$\forall n \in \mathbb{N}, u_{n+1} = \frac{u_n + 8}{2u_n + 1}.$$

On pose alors, pour tout $n \in \mathbb{N}$,

$$v_n = \frac{u_n - 2}{u_n + 2}.$$

- 1. Montrer que $(v_n)_{n\in\mathbb{N}}$ est une suite géométrique de raison $-\frac{3}{5}$.
- 2. Exprimer v_n en fonction de n.
- 3. En déduire l'expression de u_n en fonction de n.
- 4. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ converge et déterminer sa limite.

Exercice 6. Soit
$$f(x) = \frac{3 - x^2}{2}$$
 et $u_0 = \frac{1}{2}$.

- 1. (a) Montrer que f est décroissante sur $[0, \infty[$.
 - (b) Montrer que l'intervalle $[0, \sqrt{3}]$ est stable par f. Quelle conclusion en tirer sur la suite $(u_n)_{n\in\mathbb{N}}$?
 - (c) Trouver $\ell \in [0, +\infty[$ tel que $f(\ell) = \ell$.
- 2. Montrer que les suites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ sont respectivement croissante et décroissante.
- 3. En déduire que $(u_n)_{n\in\mathbb{N}}$ est convergente et déterminer sa limite.

Exercice 7 (\sim CC 2023). Considerons la suite récurrente définie par $u_0 = 5$ et

$$f \colon \mathbb{R} \to \mathbb{R}, \ x \mapsto \frac{1}{2} \arctan x.$$

- 1. f a un point fixe $l \in \mathbb{R}$ évident, lequel?
- 2. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est convergente et déterminer sa limite.

Exercice 8.

Soit $f(x) = \frac{1}{2}(\cos(x) - 1)$ et $u_0 \in \mathbb{R}$. Montrer que u_n converge et déterminer sa limite.

Indication: f a un point fixe $l \in \mathbb{R}$ évident, lequel?

Exercice 9. Soit $f(x) = \frac{1}{4}(x^3 - 3x)$.

- 1. Déterminer les extremums locaux x_- et x_+ de la fonction $f, x_- \le x_+$, et ses trois points fixes $l_-, l_0, l_+, l_- < l_0 < l_1$. Dessiner le graphe de la fonction f.
- 2. Soit $I_0 = [x_-, x_+]$. Montrer que $f(I) \subset I$ et que la fonction f est contractante sur l'intervalle I. Que peut-on en déduire sur $\lim_{n\to\infty} u_n$ si $u_0 \in I_0$?
- 3. Montrer que les intervalles $I_- :=]-\infty, l_-]$ et $I_+ := [l_+, \infty[$ sont stables par rapport à f. Que peut-on dire de $\lim_{n\to\infty} u_n$ si $u_0\in I_-$, et si $u_0\in I_+$?
- 4. Soit $u_0 = 2$. Déterminer $\lim_{n \to \infty} u_n$.

Exercice 10. Soit $f \in C^1(\mathbb{R})$ et soit g la fonction définie par g(x) := f(x) - x.

- 1. Montrer que p est un point fixe de f si et seulement s'il est un zéro de g.
- 2. En déduire que f a au plus un point fixe si g est strictement monotone.
- 3. Soient p_1 et p_2 deux zéros successifs de la fonction g avec $p_1 < p_2$.
 - (a) Montrer que si g et f', restreintes à l'intervalle $I =]p_1, p_2[$, sont strictement positives, alors I est stable par rapport à f et si $u_0 \in I$, alors $\lim_{n\to\infty} u_n = p_2$.
 - (b) Montrer que si pour tout x dans $I :=]p_1, p_2[$ on a g(x) < 0 et f'(x) > 0, alors I est stable par rapport à f et si $u_0 \in I$, alors $\lim_{n\to\infty} u_n = p_1$.
- 4. Soit $u_0 = \frac{1}{2}$ et

$$f(x) = x^2 + \frac{3}{16} \,.$$

Montrer que (u_n) converge et déterminer sa limite.

5. Soit $u_0 = -\frac{1}{2}$ et

$$f(x) = -\frac{1}{2}x^2 + x + \frac{1}{2}.$$

Montrer que (u_n) converge et déterminer sa limite.

Exercice 11. Soit $f(x) = (x-1)^2$.

- 1. Calculer les deux points fixes p_1 et $p_2 > p_1$ de f.
- 2. Montrer que les deux intervalles $I_1 := [0,1]$ et $I_2 := [p_2, \infty[$ sont stables par rapport à f.
- 3. Dans les cas suivants, déterminer si la suite (u_n) converge et calculer $\lim_{n\to\infty} u_n$ si la limite existe :
 - (a) $u_0 = p_2$.
 - (b) $u_0 > p_2$.
 - (c) $u_0 = 2$.
 - (d) $u_0 = -3$. Indication: Calculer u_1 .
- 4. Soit $u_0 = \frac{1}{2} \in I_1$. Pour tout $n \ge 0$ on pose

$$v_n := u_{2n}$$
, $w_n := u_{2n+1}$.

- (a) Démontrer que la suite $(v_n)_{n>0}$ est croissante.
- (b) En déduire que la suite $(w_n)_{n\geq 0}$ est décroissante.
- (c) Montrer que les deux suites (v_n) et (w_n) convergent.
- (d) En déduire que la suite (u_n) diverge.

Exercice 12. Soit $f: \left[\frac{1}{2}, +\infty\right[\to \mathbb{R}, x \mapsto \sqrt{2x-1}.$

- 1. Soit $u_0 = 2$.
 - (a) Montrer que $(u_n)_{n\in\mathbb{N}}$ est minorée par 1.
 - (b) Montrer que $(u_n)_{n\in\mathbb{N}}$ est décroissante.
 - (c) En déduire que $(u_n)_{n\in\mathbb{N}}$ est convergente et déterminer sa limite.
- 2. Que se passe-t-il si $u_0 = \frac{3}{4}$? Indication: Essayer de calculer u_1 et u_2 .
- 3. Montrer que la suite est mal définie pour toute valeur de $u_0 \in [\frac{1}{2}, 1[$.
- 4. Trouver tous les intervalles fermés I stable par rapport à f.

Exercice 13 (CC 2023). Soit a > 0. Considérons la suite récurrente définie par

$$f \colon \mathbb{R}_+^* \to \mathbb{R}, \ x \mapsto \frac{1}{2} \left(x + \frac{a}{x} \right)$$

et un $u_0 > \sqrt{a}$.

- 1. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est bien définie. Indication: Considérer l'intervalle $I=[\sqrt{a},u_0]$.
- 2. Montrer qu'elle est convergente et déterminer sa limite.

 Indication: Il existe plusieurs façons de le faire. Dans tous les cas, vous êtes autorisé à utiliser les résultats du cours.

Suites linéaires récurrentes d'ordre 2

Exercice 14.

Donner l'expression du terme général des suites récurrentes linéaires d'ordre 2 suivantes :

- 1. $(u_n)_{n\in\mathbb{N}}$ définie par $u_0 = 1, u_1 = -1$ et $\forall n \in \mathbb{N}, 2u_{n+2} = 3u_{n+1} u_n$.
- 2. $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=1,u_1=0$ et $\forall n\in\mathbb{N},\,u_{n+2}=4u_{n+1}-4u_n.$
- 3. $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=1, u_1=2$ et $\forall n\in\mathbb{N}, u_{n+2}=u_{n+1}-u_n$.

Indication: Dans le cas où les racines de l'équation caractéristique sont complexes, mettre les racines sous la forme $\lambda_{\pm} = re^{\pm i\theta}$. Déterminer ensuite une base complexe de solutions. En prenant sa partie réelle et sa partie imaginaire, on obtient une base à valeurs réelles. Ce n'est qu'ensuite que l'on calcule les constantes de manière à ce que les conditions initiales soient satisfaites.

Exercice 15.

Donner l'expression du terme général des suites récurrentes linéaires d'ordre 2 suivantes :

- 1. $(u_n)_{n\in\mathbb{N}}$ définie par $u_0 = 4, u_1 = 3$ et $\forall n \in \mathbb{N}, u_{n+2} = -u_{n+1} + 6u_n$.
- 2. $(u_n)_{n \in \mathbb{N}}$ définie par $u_0 = 1, u_1 = 0$ et $\forall n \in \mathbb{N}, u_{n+2} = 2u_{n+1} u_n$.
- 3. $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=2, u_1=10\sqrt{2}$ et $\forall n\in\mathbb{N}, u_{n+2}=2\sqrt{2}u_{n+1}-4u_n$.