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Année 2023-2024, printemps

Introduction en forme de vade-mecum

Ce qu’il faut retenir dans une coquille de noix (< aspc > signifie < & savoir par coeur ).

« les regles de calculs sur les nombres complexes sont celles auxquelles on est habitué depuis
toujours; on a dans C les réels et un élément i dont le carré vaut —1;

 en pratique, un nombre complexe z possede deux représentations :

— < forme algébrique > : z = z + yi, ol x et y sont deux réels bien définis; cette écriture est
adaptée aux opérations linéaires (addition, multiplication par un réel);

— < forme géométrique > : z = pel?, oll p > 0 est unique et, si z # 0, § est unique & 27 pres;
cette écriture est adaptée aux produits, aux quotients, aux puissances ;
— (aspc) 'unicité des écritures se traduit par les criteres d’égalité suivants :
— x+yi=2"+1vyisietseulement siz=21a"ety=1y";
— (siz#0) pel? = plel? si et seulement sip=p et =6 [27];
« on a z = Re(z) + Im(2)i et Z = Re(z) — Im(2)i et |2|* = 2Z = Re(2)? + Im(2)?;

« (aspc) on appelle argument d’un complexe non nul z tout réel 6 tel que z = |z|e?; tous les
arguments sont égaux a 27 pres ; argument principal arg(z) est 'unique argument qui appartient
a ]_777 71'] ;

« mise en garde : la relation arg(zz') = arg(z) + arg(z’) est fausse en général! (pourquoi?) elle est
cependant vraie a 27 pres;

« les racines m-iemes se retrouvent facilement si on cherche les racines de re'® sous forme
géométrique pe'?; les criteres ci-dessus donnent p™ = r et nf = a [27], d’olt l'on tire p = rl/n et
0 = (a+ 2km)/n pour k € {0,...,n — 1} convenable).

Construction

Un réve

a) Ce que l'on a...
Prenons quelques minutes pour réfléchir aux variations de sens du mot nombre et aux regles de calcul.

N* : entiers naturels non nuls — Ca commence avec la comptine 1, 2, 3... et ca ne s’arréte jamais.
L’opération <« passer au suivant >, c’est-a-dire transformer un entier m en m+1, peut étre itérée.
Si on la répete n fois, on obtient la somme m+n. Répéter m fois 'addition de n revient a ajouter
le produit m x n, plus souvent noté mn.
Les deux opérations somme et produit suivent des regles de calcul que 'on a intégrées depuis
longtemps : pour tous m, n et p,

(m+n)+p=m+(n+p) e m+n=n+m, (1)

qu’on appelle associativité et commutativité ; ces regles permettent de ne pas se préoccuper de
I’ordre dans lequel on fait des sommes de plusieurs nombres car on trouvera toujours le méme
résultat.

La multiplication suit les mémes regles :
(mn)p =m(np) et mn=nm. (2)

De plus, on a une propriété utile de compatibilité entre les deux, appelée la d'ist’ributivitéEl: pour
tous m, n et p,
m(n + p) = mn + np (3)

1. Certes, on ne la voit pas a I’école primaire... Elle n’en est pas moins vraie!


http://www.cnrtl.fr/definition/vade-mecum

(c’est-a-dire, vu les priorités des opérations, m(n + p) = (mn) + (np)).
Le nombre 1 joue un role particulier dans le produit des entiers : on dit qu’il est neutre : pour
tout m,

Ixm=m=mx L (4)

N : entiers naturels — On ajoute un < nombre > 0 pour dénombrer les collections vides. Du point
de vue opératoire, il est caractérisé par le fait d’étre neutre pour I'addition et absorbant pour la
multiplication : pour tout m on a :

m+0=m=04+m et mx0=0=0xm. (5)

iez-v i /
Sauriez-vous dire formellement ce qu’est un nombre naturellr|? Sans doute pas et ce n’est pas
grave car vous savez les manipuler et ¢a ne vous inquiete pas de ne pas savoir.

7 : entiers relatifs — Rapidement, quand on sait faire des additions se pose le probleme de faire des
soustractions (< combien faut-il ajouter & 3 pour obtenir une somme égale a 77 ). On s’apercoit
vite que toutes les soustractions ne sont pas possibles dans N. Autrement dit, étant donné m
et n, 'équation
r+m=n

n’a une solution dans N que si n > m — on la note n —m. On introduit alors les entiers négatifs :
pour tout entier m, on introduit un nouveau <« nombre > noté —m qui est le nombre qu’il faut
ajouter a m pour trouver O :

m+ (—m)=0=(—m)+m. (6)

Autrement dit un entier relatif m, c’est un entier naturel |m| précédé d’'un signe sg(m) qui est +
ou — (souvent omis si c’est 4+). On étend les opérations de N & Z : si m et n sont deux entiers
relatifs, alors

|m| + |n| sim=|m|etn=|n|;
|m| — |n] sim=|m|etn=—|n|et |m|>=|n|;
—(In| - im=|m|etn=—n|et|m|<

)l s = et = et ] <
—(\m| — |n|) sim=—|m|etn=|n|et|m|>|n|;
In| — |m| sim=—|m| et n=n|et |m|<|n|;
—(Im|+ In|) sim=—|m|etn=—|n|;

_ JIml xn| si sg(m) = sg(n) ;
mn = .

—(Im| x n|) si sg(m) = —sg(n)

Dit comme ¢a, ¢a semble bien compliqué a énoncer et passablement arbitraire, alors que c’est la
seule facon de plonger N dans un ensemble ou il y a une soustraction.

Grande satisfaction : les regles de calcul vues plus haut restent valables!

On sait alors résoudre toutes les équations © +m = n : si n > m on a la solution n — m; si
n < m on a la solution —(m — n).

Sauriez-vous dire formellement ce qu’est un nombre négatifEl Peut-étre pas (méme si vous savez
définir une température négative ou un compte en banque négatif) et ce n’est pas grave car vous
savez les manipuler de facon efficace et ¢a ne vous inquiete pas de ne pas savoir.

Q : nombres rationnels (fractions) — De méme que pour ’addition, savoir faire des multiplica-
tions conduit vite a des probléemes de division (< par combien dois-je multiplier 5 pour trou-
ver 357 >); il y a aussi les problemes de partage (< pour partager équitablement 120 écus entre
5 personnes, combien faut-il en donner & chacune ? »). On s’apergoit vite que toutes les divisions

2. Scoop : c’est un ordinal que ’on ne peut pas mettre en bijection avec une partie propre.
3. Scoop : c’est une classe d’équivalence de couples (a,b) € N x N pour la relation (a,b) ~ (¢,d) sia+d=c+b.7



ne sont pas possibles, du moins elles font apparaitre un reste. Autrement dit ’équation suivante
n’a pas toujours de solutions dans Z :

ar +b=c.

On introduit alors un nouvel ensemble de < nombres > dits rationnels constitué des symboles de
la forme a/b ol a et b sont deux entiers avec b non nul. Si @’ et b’ # 0 sont deux autres entiers,

alors ,
a a , ,
5 = y <— ab —ba' = 0.
On étend alors les opérations : si a, b, c,d € Z avec b # 0 et d # 0,
a . ¢ _ad+bc
b d  bd
a ¢ ac
- X - =—,
b d bd

Dit comme ca, ¢a semble un peu arbitraire, non ? Pourtant vous y étes tellement habitués que
votre surprise pourrait vous surprendre...

Grande satisfaction : les regles de calcul vues plus haut restent valables! On en a une de plus :
pour tout rationnel 7, il existe un autre rationnel noté r~! ou 1/r tel que

1
,

:1:

1
T X —
,

X 7. (7)

On sait résoudre toutes les équations ax + b = ¢ : 'unique solution est (¢ —b)/a (si a # 0).

Sauriez-vous dire formellement ce qu’est une fractionﬁ? Peut-étre pas et ce n’est pas grave car
vous savez les manipuler de fagon (assez) efficace et ¢a ne vous inquiete pas de ne pas savoir.

R : nombres réels — Le passage des rationnels aux réels n’est pas de méme nature. Il ne s’agit pas
d’ajouter des < nombres > pour pouvoir résoudre des équations mais de donner un sens a la
limite des suites qui < doivent > en avoir une.

En gros, si on se donne un entier et une suite finie de décimales, par exemple 3 et (1,4,1,5,9),
on peut former le nombre rationnel 3,14159. L’introduction des réels donne un sens aux
développements décimaux illimités quelconques.

Je n’essaie méme pas de décrire la somme ou le produit de deux réels en termes de développement
décimaux — d’ailleurs ce n’est pas comme cela qu’elles sont définies... Néanmoins, on a sur R
deux opérations qui, grande satisfaction, suivent les regles de calcul vues plus haut !
Sauriez-vous dire formellement ce qu’est un réel 7 Sans doute pas et ce n’est pas grave car vous
savez les manipuler et ¢ca ne vous inquiete pas de ne pas savoir.

C : nombres complexes — Ce n’est toujours pas suffisant : certaines équations tres naturelles,
comme l'équation 2 + 1 = 0 et plus généralement les équations de degré 2 dont le discriminant
est strictement négatif, n’ont pas de solution réelle. C’est a ce probleme que le chapitre doit
remédier — et de quelle maniere, voir le théoreme de D’Alembert-Gauss [[L1IIB%k)

Saurez-vous dire formellement ce qu’est un complexe ? Sans doute pas et ce n’est pas grave car
vous saurez les manipuler et ca ne vous inquietera pas longtemps de ne pas savoir.

b) Ce que ’on veut préserver : la structure de corps

On part de 'idée qu'un ensemble de < nombres >, c’est un ensemble ou 'on sait calculer. Plus
précisément, on a deux opérations, la somme et le produit, et des regles de calcul usuelles. La définition
ci-dessous donne un ensemble minimal de ces régles pour les réels, d’ou ’on peut déduire toutes leurs
propriétés algébriques. Il y a donc deux facons de les considérer : d’une part, constater que oui, ce
sont des propriétés « évidentes > ; d’autre part, s’émerveiller que tout le reste découle de ces quelques
regles naturelles.

4. Scoop : c’est une classe d’équivalence de couples (a,b) € Z x Z* pour la relation (a,b) ~ (c,d) si ad = cb.
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Définition. On appelle corps un ensemble K muni de deux opérations, la somme + : K x K — K
(a,b) = a+b et le produit - : K x K — K| (a,b) — a-b (noté aussi ab ou a x b), tels que :

(i) la somme est associative : pour tous a, b, cde K,ona: (a+b)+c=a+ (b+c¢);
(ii) la somme est commutative : pour tous a et bde K,ona:a+b=>b+a;
(iii) la somme admet un neutre : il existe un élément de K noté 0 tel que pour tout a dans K, on a :
a+0=a=0+4a;

tout élément admet un opposé : pour tout a de K, il existe un élément a’ tel que a+a’ =0 = a’+a;

)
(v) le produit est associatif : pour tous a, b, c de K, on a : (ab)c = a(bc);
) le produit est commutatif : pour tous a et b de K, on a : ab = ba;

)

le produit admet un neutre : il existe un élément de K noté 1 tel que pour tout a dans K, on a :
axl=a=1xa;
(viii) tout élément non nul admet un inverse : pour tout a de K différent de 0, il existe un élément a’
tel que aa’ =1 =d'a;
(ix) le produit est distributif sur la somme : pour tous a, b, ¢ de K, on alﬂ ca(b+c) = ab+ ac et
(a+b)c=ac+bc;

(x) les neutre de la somme et du produit sont différents.

Remarque. Les neutres sont uniques : si 0 et 0 sont deux neutres, on a; 0 + 0" = 0 car 0 est neutre
et 0+ 0’ =0 car 0 est neutre, si bien que 0 = 0’. Idem pour 1.

De méme, ’opposé est unique : si un élément a possede deux opposés a’ et a”, on a par associativité :
ad=d+0=d+(a+d")=(+a)+d"=0+d" =d". On le note : —a.

Idem pour l'inverse ; on note a~! ou 1/a l'inverse d’un élément non nul a.

Remarque. Si toutes les propriétés sont satisfaites sauf la propriété on dit que K est un anneau.

Par exemple, Z muni des opérations habituelles est un anneau mais pas un corps (les éléments non
nuls autres que —1 et 1 n’ont pas d’inverse dans Z).

Voici une propriété si utile qu’on la prouve en détail et une définition indispensable aussi.

Lemme. Dans un corps K, un produit est nul si et seulement si l'un des facteurs est nul :
Va,be K, ab=0 < (azO oub:0).

Démonstration. Supposons d’abord que b=0.Ona:ax0=ax (0+0) =ax0+4a x 0. En ajoutant
aux deux membres 'opposé de a x 0, on trouve : 0 = a x 0. On proceéde de méme pour montrer que
si a = 0, alors ab = 0, ou bien on utilise la commutativité. Réciproquement, supposons que ab = 0. Il
s’agit de montrer que si a # 0, alors b = 0, ce qui équivaut & < a = 0 ou b = 0 ». De fait, si a # 0, il
possede un inverse ! et il vient : b=1b=a"lab=a"! x 0 = 0. O

Définition. Soit K un corps et @ un élément de K. On définit les puissances de a ainsi : a® = 1 (et
ce, que a soit nul ou pas; attention aux conventions différentes dans d’autres contextes); a! = a et,
pour n € N, a"*! = a"a.

c¢) Ce que l’on va faire
On va construire un ensemble de nombres qui contient les réels, noté C et appelé corps des nombres
complezes, dans lequel toutes les équations de degré 2 ont une solution (II1IB9b)) et méme toutes les

équations polynomiales (I1IB%))).
Construction formelle (hors programme)

On peut sauter cette partie qui démontre le théoreme justifiant 1’existence du corps des complexes.

5. Dans Pexpression ab + ac, il faut comprendre (ab) + (ac) selon la convention habituelle de priorité au produit.



a) Un ensemble et des opérations

Définition. Comme ensemble, on définit ’ensemble C des nombres compleres comme ’ensemble R?
des couples de réels. On définit deux opérations sur C :

+: CxC — C et -: CxC — C
((a,b), (d, V) +— (a+d b+¥) ((a,b), (d',0)) +— (ad’ — b, ab/ + ba’).

Lemme. Muni de ces opérations, C est un corps.
Démonstration. (i) Pour I'associativité de I’addition, étant donné (a,b), (a’,V'), (a”,b") € C, on a :

((a.b) + (@) + (", 0") = (a + ', b+ V) + (", b") = (a+d +a", b+ b +1)
(a,b) + ((a',b') + (a”,b”)) _ (a,b) + (a'+a”,b’+b") _ (a+a'+a",b+b'+b"),

d’ou ’égalité.
(ii) Pour la commutativité, étant donné (a,b), (a’,b') € C, on a :

(a,b) + (a',0) = (a+ad',b+ V)= (a +a,b/ +b) = (d',b) + (a,b).

(iii) Le neutre de 'addition est : 0 = (0,0) car pour (a,b) € C, (a,b) + (0,0) = (¢ + 0,0+ 0) = (a,b).
(iv) Pour tout (a,b) € C, on a : (a,b) + (—a,—b) = 0 donc (a,b) a pour opposé —(a,b) = (—a, —b).
(v) Pour I'associativité du produit, étant donné (a,b), (a’, V'), (a”,b") € C, on a :

((a, b)(a/, b/)) (a//’ b//) _

aa’ — b, ab’ +ba')(a”,b")
aa/all o bb/a” o ab/b// o ba/b”7 aa/b” o bb/bll + a /a// + ba/a//)
a, b)(a/a” o b/bll7 a/bll + b/a”)

aala// o ablbll o ba/b// o bb/a//, aa/b// + abla// + bala// o bb/b//)

(a’ b)((a’, b’)(a”, b//))

I
—~ o~~~

et on vérifie I’égalité.
(vi) Pour la commutativité du produit, étant donné (a,b), (a’,b") € C, on a :

(a,b)(a',b') = (aa’ — b, ab’ + ba') et (a',b')(a,b) = (d'a — b'b,a’b+ba).

(vii) Le neutre de la multiplication est 1 = (1,0) car pour tout (a,b), on a : (a,b) - (1,0) = (a x 1 —
bx0,ax0+bx1)=(a,b).

(viii) On cherche un inverse & (a,b) # (0,0). Remarquons d’emblée que la condition < a # 0 ou
b # 0> est équivalente & a® + b # 0 (pourquoi ?). Il s’agit de trouver (a’,b') tel que :

aad' —bb =1

ba' + abl = 0.
On résout sans peine ce systeme de deux équations & deux inconnues (a’, ') : on multiplie la premiere
égalité par a et la deuxieme par b et on ajout, puis on multiplie la premiere par —b et la deuxieme
par a et on ajoute : cela donne a’ = a/(a? + b?) et b’ = —b/(a? + b?). La distributivité est un exercice

d’écriture fastidieux mais facile.
(ix) Pour la distributivité, étant donné (a,b), (a’,¥'), (a”,b") € C, on a :

(CL, b)((a', b/) + (CLH, b//)) a, b)(a/ + CL”, b/ + b//)
aa’ + aa” — bt/ — bb", ab' + ab” + ba’ + ba")
aa’ — b, ab’ +ba') + (aa” — bb", ab” + ba")

aa’ — bb' + aa” — bb", ab’ + ba' + ab” + ba")

~~ I~ I/~

(a,b)(a’, V) + (a,b)(a",b") =

et on vérifie qu’il y a égalité.
(x) I est clair que (0,0) # (1,0) puisque 0 # 1 dans R. O
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b) Simplification de 1’écriture

Premieére étape. Considérons l'application suivante : ¢ : R — C, a — (a,0). C’est une injection
car si (a,0) = (d/,0), alors a = @ et on vérifie que l'on a

p(0)=0, ¢(1)=1, pla+d)=¢pa)+e(d), ¢lad)=p(a)pda)
pour tous a et a’ réels. On identifiera R et son image dans C par ¢, ce qui conduit a la définition
suivante.

Définition. Soit z un nombre complexe. On dit que z est réel s’il appartient a I'image de ¢, c’est-a-dire
s’il existe a € R tel que z = ¢(a).

Ezxercice. Au passage, on dit que z est imaginaire pur s’il existe b réel tel que z = (0,b). Montrer que
tout complexe peut s’écrire de fagon unique comme somme d’'un réel et d’un imaginaire pur. (Sens?)

NOTATION. Désormais, pour a réel, on notera par abus a le nombre complexe ¢(a) = (a,0).
En particulier, on notera 0 =0 et 1 = 1.
Enfin, on convient de noter i le nombre complexe : i = (0, 1).

Deuxieme étape. On calcule :
i2=1(0,1)-(0,1) = (0x0—-1x1,1x04+0x1)=(-1,0) = —1.

c) Soient a et b réels. On a dans C :

(a,b) = (a,0) + (0,b) = (a,0) + (b,0) - (0,1) = p(a) + ¢(b)i = a + bi.
d) Pour résumer, voici ce qu’on appelle la représentation algébrique d’un complexe.
Proposition. Soit z un nombre compleze. Il existe un unique couple (a,b) € R? tel que

z = a+ bi.

Démonstration. En effet, un nombre complexe est, formellement, un couple (a,b) de réels et on a vu
que a + bi est simplement une autre écriture pour (a,b). O
On peut récrire les opérations avec ces nouvelles notations.

Corollaire. Soient z et 2’ des nombres complexes. Il existe d’uniques réels a, b, a’, b tels que z = a+bi
et 2 =a' +Vi. Alors :

i) z+2 =a+ad +(b+0V)i;

(i) 22’ =aa’ — b + (ab' +ba')i;

1 a —b
(iii) si z n'est pas nul, c’est-a-dire si a ou b n’est pas nul, alors : — = + i.
z a2 +b  a?+0b?

Perte de 'ordre

a) Corps ordonnés

Chez les réels, la relation d’ordre < est compatible avec certaines opérations algébrique. Plus
précisément...

Définition. On appelle corps ordonné un corps K (avec ses opérations, ses neutres, etc.) muni d’une
relation d’ordre < telle que pour tous a, b, ¢ de K, on a :
(i) sia < b, alorsa+c<b+c;
(ii) sia < bet c >0, alors ac < be.
Les éléments positifs (resp. négatifs) sont les éléments a tels que a > 0 (resp. a < 0).
Lemme. Soit K un corps ordonné. Alors, —1 est strictement négatif et tout carré est positif.

Démonstration. Soit a un élément de K. Si a < 0, on applique la regle (i) avec b = 0 et ¢ = —a, on
trouve : 0 < —a; de méme, si a > 0, il vient : 0 > —a. Autrement dit, a est positif si et seulement si
—a est négatif.

Par la regle (ii) avecszetc:a,ﬂVient,sia>O:a2 > 0. Maissia <0,ona:—a=0et

a’? = (—a)? = 0. Ainsi, un carré est positif. En particulier, 1 = 12 est positif, d’ott —1 est négatif. [
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b) Le corps des complexes ne peut pas étre ordonné
Corollaire. Il n’existe pas d’ordre sur C qui fasse de C un corps ordonné.

Démonstration. En effet, —1 est un carré dans C — c’est le carré de i, par construction. S’il y avait
un ordre sur C compatible aux opérations, —1 serait strictement négatif, comme dans n’importe quel
corps, et positif en tant que carré. C’est absurbe. ]

Présentation pragmatique
Dans le paragraphe [2° on a démontré le théoréme suivant.
Théoreme. Il existe un corps noté C et appelé corps des complexes contenant R et un élément noté i

tel que
i? = 1.

Plus précisément, tout élément de C s’écrit de facon unique a + bi avec a et b réels, et les opérations
sont définies ainsi :
e pour a, b, a’, b réels, z=a+bi et 2’ =a + Vi,
z4+2 =a+d+ b+V)i;
22" = aa — bb' + (ab/ + ba')i ;
o le neutre de ’addition est 0 = 0+ 0i;
lopposé d’un compleze a + bi est —a + (—b)i;

o le neutre de la multiplication est 1 =14 0i;
o linverse d’un compleze a + bi non nul (i.e. tel que a®> +b*> > 0) est
1 a -b .
a+bi a2+ b2 +a2—|—b2l'

Propriétés algébriques
Parties réelle et imaginaire, conjugaison

Définition. Soit z un nombre complexe. On a vu qu’il existe un unique couple (a,b) € R? tel que
z = a+ bi. On appelle partie réelle de z le réel a et partie imaginaire de z le réel b.
On appelle conjugué de z et on note z le nombre complexe : Z = a — bi.

Mise en garde. Attention, la partie imaginaire de a + bi est bien le réel b et pas bi.
Remarque (& savoir par cceur). Autrement dit, pour tout complexe z, on a :
z=1Re(z) +Im(2)i et Z=Re(z)—Im(z)i.
On en déduit par somme et différence :
Z+z 22—z

Re(z) = 5 et Im(z)=

On énonce une évidence qui traduit le fait que I’écriture.

Lemme. Deux complexes sont égaux si et seulement si leurs parties réelles sont égales et leurs parties
imaginaires sont égales :

V2,2 €C, z=7 < {Re(z) = Re(2)
Im(z) = Im(2).

Ezercice. Soit z un complexe. Montrer que z est réel si et seulement si z = Re(z) si et seulement si
zZ=7Z.

Lemme. La conjugaison préserve somme et produit :
V2,2 €C, 242 =Z+2, etz =%7.

La conjugaison est une involution :
VzeC, z ==z.
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Module

Lemme. Soit z un nombre complexe. Alors zZ est un réel, il vaut : 2Z = Re(2)? + Im(z)2.

Bien qu’on ne sache pas définir y/z pour un nombre complexe §’il n’est pas un nombre réel positif (et
on ne saura toujours pas le faire a la fin du chapitre), le lemme donne un sens a la définition suivante.

Définition. Soit z un nombre complexe. On appelle module de z et on note |z| le nombre réel :

|z| = V2Z.

Remarque. Pour z réel, le module de z (vu comme nombre complexe) coincide avec la valeur absolue
de z (vu comme nombre réel). Pas de conflit de notation.

Proposition. Soient z et 2’ deux entiers et k un entier relatif. On a :

(i) 2| = 0 et (|z] =0 si et seulement si z =0) ;
(i) [2] = [z
(ii) [22| = [2] [¢'];

(iv) siz #0, alors ‘f‘ |Z‘ ;
(v) sik >0 ousiz#0, aors : |2F| = |z|F.

Démonstration. (i) Dans R, un carré est positif ou nul, a fortiori une somme de deux carrés 1’est aussi.
Mais elle ne peut étre nulle que si les deux carrés sont nuls, ce qui entraine la propriété.

(ii) On a : |z] = /Re(2) —1Im(2))% = |z|.

(iii) On pose a = Re(z) et b = Im(z), idem pour 2/, et on calcule :

|22'|? = laa’” — bb' + (ab/ + ba')i‘2 = (aa’ — bb')* 4 (ab' + ba')? et (|2] |z'|)2 = (a® + bz)(a’2 + b’2),

deux expressions que l'on identifie en les développant. Comme |z2/| et |z| |2/| sont deux réels positifs
qui ont le méme carré, ils sont égaux.

(iv) Pour z # 0, on prend 2/ = 1/z. Il vient : |z| |2/| = |22/| = |1| = 1 donc : |1/2] = 1/ |z]|.

(v) On suppose d’abord k € N et on procede par récurrence sur k. Pour k = 0, 1’égalité est vraie car
conventionnellement, chaque membre vaut 1. Pour k& = 1, ’égalité est évidente. Soit k un entier, on

suppose que |zF| = |z|*. Alors, en prenant 2’ = z* dans (ii), il vient : |25 = |2] |2¥] = |2 |2|F =
]z\kH. A présent, si k est strictement inférieur & zéro, on constate que z¥ est I'inverse de 2% et on
applique (iii). O

On vient de voir que le module se comporte au mieux avec produit et puissances — le module du
produit est le produit des modules. Avec la somme, c’est plus compliqué.

Proposition (inégalité triangulaire). Soient z et 2’ deux complezes. Alors :
Hz\ — |2'H <z =72 <2+ ‘z"

Démonstration. Pour prouver I'inégalité |z — 2/| < |z| 4 |2/|, qui fait intervenir deux réels positifs ou
: 2
nuls, il suffit de prouver que I'on a : |z — 2/|> < (|z[ + [2/])”. Or, on a :

lz— PP =(z—2)z—2 =|2]* — 22/ — 2 + |z’}2 = |z]* + |z’|2 — 2Re(z2/)

et
(2] + |z/|)2 = |2|” + |Z/|2 +2|2].
L’astuce consiste & introduire w = 22’ et & remarquer I'égalité : |22| = |z| || = |2| |#/] = |w]|. Tl suffit
donc de montrer : — Re(w) < |w|, ce qui est évident :
—Re(w) < |Re(w)| = /Re(w)? < /Re(w)? + Im(w)2. O
FEzercice. Soient z et 2’ deux complexes non nuls. Montrer que si \z + 2| = |z| + |Z/] (vesp. |z + 2| =

Hz\ — [#]]), alors il existe a réel strictement positif (resp. strictement négatif) tel que 2’ = az.

Remarque. Voici une interprétation géométrique a l'inégalité triangulaire : connaissant r = |z| et
= |Z/|, que peut-on dire de z — 2’ ? La réponse, c’est que z — 2’ est dans la couronne colorée.
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FIGURE 1 — Connaissant |z| et |2/], on sait que z + 2’ et z — 2’ sont dans la couronne (en pointillés
orange, les points z + 2’ lorsque z est fixé et |2/| est fixé : la couronne est la réunion de tous ces cercles)

Racines carrées et équations de degré 2

a) Racines carrées

Définition. Soit A un nombre complexe. On appelle racine carrée de A tout complexe z dont le carré
vaut A, c’est-a-dire tel que 22 = A.

Ezemple. Soit A = 0. Comme un produit est nul si et seulement si I'un des facteurs est nul, ’égalité
2?2 = 0 équivaut & z = 0. Autrement dit, 0 possede une unique racine carrée, qui est 0.

Ezemple. Soit A = a un réel strictement positif. Il existe deux réels dont le carré vaut a qui sont
l'opposé I'un de lautre. Celui qui est positif est appelé la racine carrée (réelle) de a, on le note \/a
(ou al/ 2). Pourrait-il y avoir d’autres complexes dont le carré vaut a ? Pour tout complexe z, on a :

Pmg = 2 a=0 = 22 \a =0 — (z = Va)(z +va) = 0.

Comme un produit est nul si et seulement si 'un des facteurs est nul, a posséde deux racines carrées
dans C, qui sont /a et —y/a. On voit donc que la nouvelle dénomination, qui met /a et —y/a sur un
pied d’égalité, est une évolution par rapport a celle que ’on connaissait.

. . . L 2
Ezemple. Soit A = a un réel strictement négatif. Alors A = —|a| et on remarque que |a| = +/|a|” et

que —1 = i2, de sorte que —|a| = i2 ]a\Z = (i\/\a|)2. Pour tout complexe z, on a donc :

=A< 2 (—|a]) =0 <= 22—(1\/m>2:0 = (z—i |a|)(z+i\/M) = 0.

Un produit est nul etc., donc a < 0 admet deux racines carrées complexes : iy/|a| et —iy/]al.
Venons-en a un exemple plus significatif. Il y a deux idées :
— D’équation 22 = A se traduit par un systeme de deux équations & deux inconnues Re(z) et Im(z);

— on ajoute & ce systéme une équation redondante, |z|? = |A|, ce qui revient & utiliser le lemme
évident suivant.

Lemme (méthode & connaitre). Soient z et A deux complezes. Alors :

22=A

=A== )
2" = |A.



Démonstration. On procede par double implication. Supposons que z? = A. On doit montrer que 2% =
A et que |z|* = |A|. La premitre égalité est évidente et la deuxiéme est tres facile : |z|* = |22] = |A],
d’ott 'implication directe. La réciproque est triviale : si 22 = A et |z|> = |A|, on a bien 22 = A... [

Exemple. Soit A =5 —12i. On cherche z =  + yi complexe, avec x et y réels, tel que 22 = A. D’apres
le lemme, on a :

2_A
P =A = {Z2
217 = [4]

22 —y? 4+ 2wyi =5 —12i
<
2? +y? = /52 4 (—12)?

{x2—y2:5 (L1)
= 2y =—12 (L)
1;2—|—y2:13 (LS)
( 5+ 13 1
2 _ _
T = 5 =9 §(L1+L3)
—5+13 1
= Ny = 5 =4 5(*[11 + L3)
2uy = —12 (L2)
r ==£3
— (y==x2
ny:—6
r=3 r=3 -3 -3
— qy=2 ou = -2 ou y=2 ou = -2
Lmy:—6 zy = —6 ry = —6 ry = —6
T = x=-3
— ou
y=-—2 y=2.

Dans la derniere équivalence, le premier et le quatrieme cas ne donnent pas de solution puisque xy > 0,
alors que l'on veut xy = —6.
Proposition. Un nombre complexe A admet exactement une ou deuz racines carrées. Plus précisément,
— si A est nul, sa seule racine carrée est 0 ;
— st A n’est pas nul, il admet deuzr racines carrées distinctes qui sont opposées l'une de autre :
si & est U'une d’entre elles, l’autre est —9.
Démonstration. Ecrivons A = a + bi, avec a et b réels. On cherche § = x + yi complexe, avec x et y
réels, tel que 6% = A.

Sib =0 alors A = a est réel : on a vu dans les exemples ci-dessus que a admet deux racines carrées
(ouunesi A=0):

— si a > 0, les racines carrées complexes de a sont /a et —/a;
— si a = 0, 'unique racine carrées complexes de a est 0;
— si a < 0, les racines carrées complexes de a sont iy/|a| et —iy/|al.

On suppose désormais que b # 0.

10



On utilise I'astuce contenue dans le lemme ci-dessus (noter que |A| = va? + b?) :

=A< 522:A
01" = 14]

{xQ—yz—l—Qxyi:a—i—bi

2 +y? = |A

voyt=a (L1)
<= 2zy=15b (L)

22 +y? = |A| (L3)

1

22 = ‘A|2+ a §(L1 + L3)
— { 2_|Al—a 1

=" 2( L1+ L3)

2zy = b (Ls)

On vérifie que |A| = a = Va2 + b2 £ a est strictement positif : en effet, a? < a? + b? donc : Fa < |a| <
Va? < va? + b2. Ainsi, au signe prés, x et y sont respectivement égaux a

_ JIAl+a _ [IAl=a
o= 5 et B= 5

Ce sont deux réels strictement positifs. Comme |A|? = a? + b, on a

(|A] +a)(JA] — a) A2 —a?  Va?+b2—a® |}
o= 1 - i 2 T2

b
Vu que b # 0, on écrit b = sg(b) |b| ou sg(b) = ] = +1 est le signe de b. Il vient :
|z] = «
P =A< {ly =2
xy = sg(b)af.

Les deux premieres équations donnent quatre solutions pour (z,y), a savoir («, ), (a, —f), (—a, 3)
et (—a, —p), parmi lesquelles deux sont & écarter car on veut que z et y soient de méme signe si
sg(b) = +1 et que x et y soient de signe opposé si sg(b) = —1.

Au bilan, A admet exactement deux racines carrées : +(« + sg(b)5i), c’est-a-dire

Va2 112 VZ 12—
m+sg(b) va'toT—a, . ee{-1,1). O

Mise en garde. Comme un compleze A admet deux racines carrées (s’il n’est pas nul) et qu’il n’y a
pas de moyen naturel d’en choisir une (par exemple, la notion de positivité n’a pas de sens sur C), il
ne faut pas parler de < la > racine carrée de A et il faut encore moins écrire A (a4 moins que A ne
soit un réel positif ).

Mise en garde. Cette formule vaguement ignoble n’est pas a retenir mais il faut savoir calculer les
racines carrées en suivant la preuve ou les exemples ci-dessus.

b) Equations de degré 2

Proposition. Soient a, b, ¢ trois complezes, a non nul. Il existe un ou deux nombres complexes z tels
que az? +bz+c= 0, c’est ou ce sont :
—b+9 —-b—90
et ,
2a 2a

11
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ot § est l'une des deux racines carrées de A = b* — 4ac.
(Plus précisément, si A est nul, I’équation az? + bz +c = 0 admet une unique solution —b/(2a) ; si A
n’est pas nul, elle en admet deuz distinctes.)

Mise en garde. Le premier qui écrit VA dans une situation ot A est un complexe qui n’est pas un
réel positif en recoit unelﬂ. Les suivants aussi.

Démonstration. Soit A = b*> — 4ac. Soit § une racine carrée de A, c’est-d-dire un complexe tel que
82 = b? — 4ac. On réduit le polynome & sa forme canonique :
AE
z2+— | ——.
( 2a> 4a?

n b\?2 b2 n 4ac
z2+4—| ——+—| =a
2a 4a?2 = 4a?

Cette derniere expression se factorise (4% — B? = (A+ B)(A— B)) :

az’ +bz+c=a 24—3—1—i z—%i—i
B 2a  2a 2a  2a)’

et I'on conclut en arguant qu’un produit est nul si et seulement si 'un des facteurs est nul. ]

b
az2+bz+c:a[22+z+c} =a
a a

c) Equations polynomiales générales
On admet le théoreme suivant[7]
Théoréme (D’Alembert-Gauss). Soient n un entier naturel non nul et ag, ..., a, des complexes, ay
non nul. Il existe un complexe z tel que
anz" 4 ap_12" L+ 4+ ajz+ag =0.
Autrement dit, toute équation polynomiale non triviale possede une solution. On verra au S2 qu’elle
en possede en fait n si on les compte convenablement.
Deux formules utiles

Les deux formules suivantes servent en permanence. Il faut les connaitre dans un sens et dans 'autre
— savoir factoriser une somme en produit et développer un produit en somme.
a) Différence de puissances

Proposition. Soient n un entier naturel non nul et a, b deur complexes. Alors :
n—1
a" = b =(a—b) (@ +a" b+ +ab" P+ ") = (a—b) Y aorF,
k=0

Ezemples. — Pour n = 2, on retrouve le fameux : a? — b? = (a — b)(a + b).
— Pour n = 3, il faut connaitre : a® — b* = (a — b)(a® + ab + b?).
— En remplacant b par —b, on trouve : a® + b> = (a + b)(a® — ab + b?).
a” —1

=a" 1 4+a" 2+ ta+l.
a—1

— Sia#1et b=1, on peut écrire :

Démonstration. On développe le membre de droite, on fait un changement d’indice (¢ = k + 1) puis
on simplifie presque tout :

n—1 n—1 n—1
(a o b) Z akbn—k‘ — Z ak:-i—lbn—k o Z aknn—k-‘rl
k=0 k=0 k=0

n n—1
_ Z afbn—f—O—l _ Z aknn—k—l-l
(=1 k=0
—a" — bn’

puisque tous les termes des deux sommes sont égaux, sauf le dernier de la premiere somme (¢ = n) et
le premier de la deuxiéme somme (k = 0). O

6. Réprimande ou admonestation, voire engueulade.

7. 11 est appelé théoreme de D’Alembert en France, théoreme de Gauss en Allemagne, théoreme fondamental de
I’algebre dans le monde anglo-saxon. A dire vrai, la preuve proposée par D’Alembert était fausse mais la premiere preuve
pourrait étre celle de Lagrange, quelques semaines avant Gauss...
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b) Rappels sur les coefficients binémiaux

Définition. Soient n et k deux entiers. On définit :

n!

0 sinon.

Ezemple. Les coeflicients correspondant aux petites valeurs de n et k sont a connaitre par coeur :

n\kl0 1 2 3 45
0 |1

111

2 |1 2 1
3113 3 1
4014 6 4 1
5115 10 10 5 1

Lemme. Soient n et k deux entiers avec n > 1. Alors : <Z> = <n ; 1) + <Z: 1)

Démonstration. Soit n un entier, n > 1. La formule est évidente si k& < 0 ou si k£ > n, les trois
coeflicients binomiaux sont nuls. Si k& = 0, ’égalité & prouver se réduit & 1 = 1 +0;si k = n, a
1 =0+ 1. On suppose désormais que 1 < k < n — 1 et on calcule :

n—1 n—-1\  (n—1)! (n—1)!
( 2 >+<k—1>_k!(n—k—l)!+(k—1)!(n—k)!
(n—k)x(n—-1)! kx(n-1)

El(n — k)! El(n —k)!
_(n—k+Ek)x(n-1)! n! _(n
M=k K=k (k) -

c¢) Formule du binéme de Newton
Proposition. Soient n un entier naturel et a, b deux complexes. Alors :
" /n
b)Y = kbnfk‘
(a+b) kzo <k)a

Démonstration. On procede par récurrence. Pour n = 0, les deux membres valent 1 de facon conven-
tionnelle. Pour n = 1, la formule est évidente : @ + b = a + b. Soit » un entier, on suppose connaitre
le développement de (a + b)"~!. On calcule :

n—1

(a+b)"=(a+D) g <n ; 1) dFpn—k-1

0
n—1 n—1
_ =1\ piin—k—1 n—1\ ik
= kE < i >a b + . I a”b

ou, pour regrouper les deux sommes, on utilise 'annulation de (Z:ll) pour £ = 0 et de (”;1) pour
k=n. O

Ezemple. Pour a =1 et b=z, on trouve : Y o (7)z* = (1 +z)".
En particulier, pour z = +1: Y (}) =2"et > 1, (}) (-1k =o.

13
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Arguments

Fonctions trigonométriques

a) On admet ici Pexistence et les propriétés des fonctions cosinus et sinus, qui sont démontrées
ailleurs. Rappelons-les. Les fonctions cosinus et sinus sont deux fois dérivables et ’on a[ﬂ :

cos’ = —sin y o cos(0) =1
., cos” +cos =0, sin" +sin =0, .
sin’ = cos, sin(0) = 0.
On a les formules d’addition :

cos(f +0') = cosfcos@ — sinfhsin b’

vo,0' € R,
sin(f + 6) = sinf cos ' + cosHsind'.

Il existe un réel 7 strictement positif tel que le cosinus est strictement positif sur [0, 7/2[ et cos(7/2) =
0. La fonction cosinus est paire, alors que la fonction sinus est impaire. Toutes deux sont périodiques
et leur plus petite période positive est 27. Voici les tableaux de variations de cos et sin sur [—, 7].

T -7 3 0 5 T
cos 0 O
-1 -1
0 I
sin \ /0 \
-1 0

b) On doit résoudre un systeme bien particulier.

Proposition. Soient a, b deuz réels tels que a® + b*> = 1. Il existe un unique 0 € |—, 7| tel que
cosf =a
sinf = b.
Démonstration. Remarquons que I'égalité a® +b% = 1 donne : 0 < a? = 1 — b? < 1. Par suite, |a| < 1;
autrement dit : @ € [—1,1]. D’apres son tableau de variations, le cosinus est continu et strictement

décroissant sur sur [0, 7] (resp. [—m,0]). Par le théoréme des valeurs intermédiaires, elle établit une
bijection de [0, 7] (resp. [—7,0]) sur [—1,1]. Il existe donc un unique 6y € [0, 7] tel que cosby = a

(resp. un unique 6; € [—7, 0] tel que cos#; = a et c’est : 61 = —0y).
Ona: |b| =1 —a?2=+/1-cos?26y = |sinf|. Comme 6y € [0, 7], on a par les variations du sinus :
|sinfp| = sinfy. Si b > 0, on a donc : b = sinfy. Sinon, on a : b = —|b| = sin(—bp). Cela établit

I’existence de 6 : on prend 6 =0y sib>0,0 =0, = —0psib<0.

Pour montrer 'unicité, supposons que 6 € |—m, 7| convienne. Si b < 0, alors sinf < 0 et donc, par les
variations de sinus, on a : § € |—m,0[. Comme cosf = cosf; et que le cosinus est injectif sur [—m, 0],
il vient : § = 61. Si b > 0, alors 6 € [0, 7] et, par injectivité du cosinus sur cet intervalle, il vient de
meéme : 0 = 6. O

Nombres complexes de module 1
a) Définition des arguments

Définition. Soit z un nombre complexe de module 1. On a donc : Re(2)? 4+ Im(2)? = 1. On appelle
argument principal de z et on note arg(z) le réel 6 € |—m, 7] tel que

cos = Re(z)
{sin@ =Im(z), @)

dont 'existence et I'unicité sont assurés par la proposition précédente.
Plus généralement, on appelle argument de z tout réel § qui est solution du systéme (A).

8. Le systeme ou une des équations, avec les valeurs en zéro, permettent de tout reconstruire.
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Proposition. Soit z un nombre complexe de module 1. Alors z posséde une infinité d’arguments. Si
01 est l'un d’entre eux, par exemple l’argument principal, les arguments de z sont les éléments de
l’ensemble :

Arg(z) = {61 + 2km, k € Z}.
Démonstration. Soit § un argument de z. Montrons qu’il existe un unique ¢ € Z tel que 'on ait :
—m < 0+ 201 < 7. En effet, cette condition est équivalente a (vérifier!)
-0+
2m
c’est-a-dire que ¢ est la partie entiere de (—6 + 7)/(27). Par périodicité, on a :

{cos(9 + 20m) = cosf = Rez

14

N

</l+1,

sin(f + 2¢7) = sinf = Im z,

de sorte que 6+ 207 est 'unique solution de ce systéme qui appartient a |—m, w]. On a donc : 0+ 201 =
arg(z).

Si on applique ce raisonnement au #; de I’énoncé, on trouve m entier tel que 6; + 2mm = arg(z). On
a donc : 0 =601 + 2kw pour k =m — /.

Inversement, la périodicité du cosinus et du sinus assure que si #; est un argument de z, alors 61 + 2km
en est un aussi pour tout entier k. ]

b) Exponentielle complexe
NOTATION. On note U ’ensemble des nombres complexes de module 1.

Définition. On appelle exponentielle compleze I'application e : R — U, 6 — €' o, pour 0 € R,

el? = cos(6) + sin(0)i.

La proposition suivante est une reformulation de ce qui précede en termes d’exponentielle.

Proposition. (i) Pour tout nombre complexe z de module 1, il existe 0 € R tel que z = el

(i) Pour tous 0 et @' réels, on a : ¢ = ¥ si et seulement s’il existe k € 7 tel que 0 = 0’ + 2k.

Remarque. La proposition entraine que I’exponentielle complexe est surjective mais pas injective.

Démonstration. (i) Soit z € U et soit # un argument de z. On a par définition : ¢ = 2.
(ii) Si el = ew/, alors 6 et 6 sont deux arguments de e, donc ils different d’un multiple de 27 par la
proposition précédente. ]

Le résultat suivant est particulierement utile et important.
Théoréme. Pour tous 6 et 0 réels, on a :
QO+ _ i 4 0
Démonstration. C’est une fagon d’écrire les formules d’addition du cosinus et du sinus :
el0+0) — cos(0 + 0') + sin(0 + 0')i
= cosf cos# —sinfsin @ + (sinf cos# + cosOsin )i
= (cosf +isinf)(cos @ +isinf’)
_ eieeie’. 0
Corollaire. Soient e R etne€Z. On a :
(i) oif — (eié))—l — o 10
(i) ()" =em?.

Démonstration. (i) On a par im-parité :

el = cosf +isinf = cosf — isinf = cos(—0) + isin(—0) = e 7.
D’autre part, on a : elfe ¢ = ¢i(0=0) — ¢0i — 1 donc e est 'inverse de el?.
(i) On procede comme pour montrer que |2"| = |z|" pour z # 0. Laissé en exercice. O
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c) Lignes trigonométriques remarquables
On a déja vu les résultats suivants :

i i ™ .. T . i . . i us Y .
el =1, em/Q:cosi—i—lsm—:z, e =cosm+isinT=—1, e /2 =cos= —isin— = —i.

2 2 2

Lemme (formules de duplication). Soit 8 € R. Alors :

{cos29—cos2ﬁ—sin20—200829— 1=1-2sin%6

sin 20 = 2sin 6 cos 6.
Démonstration. On le tire de :
cos 260 + isin 20 = e%¥ = e%e!? = (cos§ + isin#)? = cos® § — sin? O + i2sin § cos 6,

puis on remplace cos? @ par 1 — sin? @ ou I'inverse. Bien siir, on aurait pu appliquer directement les
formules d’addition... O

Ezemple. Retrouvons les lignes trigonométriques de 7/4. On a : (ei”/4)2 = ¢™/2 = 1. Soit ¢ = cos(m/4) :
c’est un réel positif car 7/4 est compris entre 0 et 7/2. On a : 2¢2 — 1 = 0 donc ¢ = v/2/2. Quant &
s = sin /4, il est aussi positif et on a : 1 —2s% = 0 donc s = ¢. On aurait pu aussi chercher les racines
carrées de i sous forme algébrique. Au bilan :

gt Y2 VY,

i27/3 ot ¢47/3 On pourra remarquer

Ezxercice. (i) Trouver les parties réelle et imaginaire de j = e
que j2 =1 et factoriser j2 — 1 = j3 — 13,
(ii) Trouver les parties réelle et imaginaire de ei™/3 et ¢™/6. On pourra remarquer que l'on a /3 =

—m+4n/3 et w/6 = 7/2 — /3 et utiliser les formules d’addition.
(iii) Trouver les parties réelle et imaginaire de €™/12. On pourra utiliser : 7/12 = /3 — /4.
d) Formules de Moivre, linéarisation

Rapprochons les formules ¢! = cosf + isin 6 et Re(z) = (z + 2)/2, Im(z) = (2 — 2)/(2i). 1l vient :

0, —i0 T
VO € R, cosf = % et sinf = %.
i

C’est utile pour « linéariser > des expressions polynomiales en cosinus et sinus. Par exemple :

8 - 4 ’

3 e16' —_e 0 €3Z0 —_e 3i0 _ 3610 1 3e 0
sinf= —| = -

39 <ei‘9 + 710 > P o310 4 o8I0 4 3610 1 36710 (o530 + 3cosf
cos’f=(——— | = =
2

_sin39 — 3sind
81 N 4 ’

Ce type de transformation permet de trouver des primitives de polynémes trigonométriques. On peut
faire I'inverse également. Exprimons par exemple cos 30 et sin 30 comme des polynémes en cosf et
sin 6.

cos 30 + isin 30 = e = (eie)3 = (cos 0 + isin 0)?
= cos> 0 + 3icos?Hsin@ — 3cosfsin? 6 — isin’ 0

= 4cos®f — 3cosf +i(3sinf — 4sin®0),

ol on passe & la derniere ligne grace & cos® 0 + sin®60 = 1.
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Arguments d’un complexe non nul

a) Passer d’un complexe de module 1 & un complexe non nul repose sur un fait trés simple.

z
Lemme. Soit z un complexe non nul. Alors, — est de module 1.

2|
2 I R 0

Démonstration. On a : = =
EIE  .E]

Définition. Soit z un complexe non nul. On appelle argument de z tout argument de z/|z|. On
appelle argument principal de z Pargument principal de z/ |z|.

Autrement dit, un argument de z est n’importe quel réel 6 tel que z = |z| ¢ argument principal est
'unique 6 € |-, 7] tel que z = |z| .

Mise en garde. Comme Chuck Norris ne sait pas diviser par zéro, il ne sait pas calculer z/ |z| et ne
peut donc pas trouver un argument pour 0.

On reformule ce que 'on a déja dit.

Lemme. Soit z un compleze non nul et soit 8 un arqgument de z. Les arguments de z sont les réels
de la forme 0 + 2km pour k entier quelconque.
Ezemple. Soit z un complexe. On a les équivalences :

— le complexe z est réel strictement positif SSI I’argument de z vaut 0 a 27 pres;

— le complexe z est réel strictement négatif SSI 'argument de z vaut 7 a 2m pres;

— le complexe z est réel non nul SSI argument de z vaut 0 & 7 prés;

— le complexe z est imaginaire pur non nul SSI Pargument de z vaut 7/2 a 7 pres.

Proposition. Soient z et 2’ deux complexes non nuls. Alors :
Jk € Z, arg(z?') = arg(z) + arg(2') + 2k.

Mise en garde. La précision < d 27 prés > est indispensable. Prenons en effet z = 2z = —i. On a :

arg(z) = —§ = arg(2’) alors que 22’ = —1 et arg(z2') =mw # -5 — T.

b) Représentation géométrique
Une représentation géométrique d’un complexe z est un couple (p,d) € RT x R tel que

z = pe.
On n’a guere le choix sur p et 6. En effet, p est nécessairement le module de z car : |z| = |pe'?| =
| |elg| = p. Conséquemment, si z n’est pas nul, 6 est nécessairement un argument de z puisque

2z =|z| €.

Lemme (Critére d’égalité pour deux formes géométriques). Soient p et p' deux réels strictement
positifs et 0 et 0" deux réels. Alors :

pel? = p’eig, i 4
dkeZ, 0 =0+ 2kn.

Mise en garde. Bien sir, si p =0, alors p' =0 et on n’a plus aucune information sur 6 et ¢'.

Démonstration. On Pa déja fait : si on pose z = pe'? = p'e? | ¢’est un nombre complexe non nul et on
a vu précédemment que nécessairement, on a : p = |z| = p’ et 6 et 6 sont deux arguments de z, qui
different donc d’un multiple de 27. Réciproquement, si ces conditions sont remplies, la périodicité de
sinus et cosinus assure que pel? = p el O

Exemple. Soit o un réel, on cherche une représentation géométrique de z = 1 + €. L’astuce consiste
A factoriser 'arc moitié '@/ :
14 el — gie/2 (efia/Z " eia/2> — ol®/29 (oo g
2
Ainsi, si cos§ > 0, on a: |1 + el = 2cos § et /2 est un argument de 1 + el si cos§ < 0,ona:
|14 ¢e'*| = —2cos § et a/2+ 7 est un argument de 1+ e'“.

Ezxercice. Avec la méme idée de factoriser ’arc moitié, traiter ' + ¢'#, on o, 5 € R.
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Racines

Racines carrées, version géométrique
Proposition. Soit A un complexe non nul. On 'écrit sous forme géométrique : A = re'® ou r = |A|
et a est un argument de A. Alors, les deus racines carrées de A sont : \/rel®/? et —\/rel®/?,

Démonstration. On vérifie immédiatement : (\/Feia/ 2)2 = rel® = A. Soit z un complexe, on a :
P2 =A = - (\/77“610‘/2)2 =0 <= (z— \/;eia/Z) (z + \/Feio‘/Z) =0,
ce qui permet de conclure. O

Racines de ’unité

Définition. Soit n un entier naturel. On appelle racine n-iéme de l'unité tout complexe z tel que
z" = 1. On note u, I’ensemble des racines n-iemes de I'unité.

Proposition. Soit n un entier naturel non nul. L’ensemble u, posséde n éléments :
Iy = {ei%”/", ke{0,...,n— 1}}

Remarque. Un intérét des racines de 'unité, c’est d’étudier la géométrie d’'un polygone régulier en
faisant des calculs dans C.

Démonstration. Soit z un élément de p,. Soient p réel positif et 6 réel tels que z = pel?. La condition
2" =1 g%écrit : p"e™ = 1. Elle équivaut & : p" = 1 et nf = k27 pour k entier convenable. Comme n
est supérieur ou égal & 1, Iapplication p — p" est une bijection de R™ sur RT. La condition p" = 1
équivaut donc & p = 1. Ainsi, les éléments de p, sont les complexes de la forme ¢, = €257/ avec k
entier quelconque.

11 faut remarquer que si k et &' different d’un multiple de n, disons k = k' + nf avec ¢ € Z, alors :

el2km/n — Gl2k'm/ntil2m — Gi2K'm/n Par guite, ¢k = Cr,our €{0,...,n — 1} est le reste de la division
euclidienneﬂ de k par n. Or, pour r et 7’ distincts dans {0, ...,n — 1}, il n’existe pas d’entier ¢ tel que
i2rm/n = i2r'7w /n + 20w /n (sinon, on aurait 0 < |r — /| < % < 1, absurbe). Ainsi, les éléments de p,
sont les n éléments (., 7 € {0,...,n — 1}. O

i2kw/n

Remarque. Si on note ( = e , alors on a : (; = ({“. Ainsi, u, est 'ensemble des n puissances

distinctes de (3.

n—1
Corollaire. Soit n un entier naturel, n > 2. On a : Z (= Z (k= 0.
CEun k=0
Démonstration. On a en effet, comme (; # 1 et (' =1

n—1 n—1 1—Cn
R .
k=0 k=0

Racines d’un complexe quelconque

Définition. Soit n un entier naturel et A un complexe. On appelle racine n-iéme de A tout complexe
z tel que 2" = A.

Proposition. Soit n un entier naturel non nul et A un complere non nul, disons A = re'® avec

r € Rt et a € R. L’ensemble des racines n-iémes de A contient n éléments :
1 ig+i2kﬂ'

1 :a
rne'n ™ ke {0,...,n— 1}} = {rﬁelﬁck, ke{0,...,n— 1}}
Démonstration. Soit zg = rueln. On a facilement : 2y = rel® = A. Mais alors, comme A n’est pas nul,
zp non plus et on a, pour tout complexe z :

n
=A== "=z = (Z) =1 < ieun — Jke{0,...,n—1}, izgk. dJ
20 20 20

9. Rappelons que pour tout couple (k,n) d’entiers, avec n # 0, il existe un unique couple < quotient-reste > (g, ) tel
que k=gn+ret 0<r < |n|.Sin >0, qest la partie entiere de k/n et r =k —n|£].
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