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Il est rappelé que la qualité de la rédaction, la clarté et la précision des raisonnements entreront
pour une part importante dans l’appréciation des copies. Les réponses aux exercices doivent donc
être clairement rédigées. Le détail des calculs doit apparâıtre sur la copie. La présentation doit
être la plus soignée possible. Enfin, si vous pensez avoir repéré une erreur d’énoncé, signalez-le
sur la copie et poursuivez votre composition en expliquant les raisons des initiatives que vous
avez été amené à prendre. La calculatrice est interdite.

Exercice 1 Soit E l’espace vectoriel sur R des applications continues par morceaux de [0, 1]
vers R. Soient F et G les sous-ensembles de E formés respectivement par les applications avec
intégrale nulle et les fonctions constantes sur [0, 1], c’est-à-dire

F =
{

f ∈ E :
∫ 1

0
f(x) dx = 0

}
et G = {φc : c ∈ R},

où on a noté φc : x 7→ c.
1. Vérifier que F et G sont des sous-espaces vectoriels de E.

Solution. Montrons que F est un sev de E :
— la fonction constante 0 appartient à F , car

∫ 1
0 0 dx = 0 ;

— si λ ∈ R et f, g ∈ F , alors∫ 1

0
(λf + g)(x) dx =

∫ 1

0
λf(x) + g(x) dx = λ

∫ 1

0
f(x) dx︸ ︷︷ ︸
=0

+
∫ 1

0
g(x) dx︸ ︷︷ ︸
=0

= 0,

d’où λf + g ∈ F .
Montrons que G est un sev de E :

— φ0 est la fonction constante 0 et appartient à G ;
— si λ ∈ R et φa, φb ∈ G, alors pour tout x ∈ [0, 1],

(λφa + φb)(x) = λφa(x) + φb(x) = λa + b = φλa+b(x),

c’est-à-dire λφa + φb = φλa+b, qui appartient à G.
2. Montrer que E = F ⊕ G.

Solution. Pour montrer que E = F ⊕ G, on vérifie que F ∩ G = {φ0} et que E = F + G.
— Si une fonction f appartient à F et à G, alors elle est de la forme f = φc pour un

certain c ∈ R et satisfait 0 =
∫ 1

0 φc(x) dx = c, d’où c = 0, et donc f = φ0. Il s’ensuit
que F ∩ G = {φ0}.

— Pour montrer que E = F + G, on considère une fonction arbitraire h ∈ E et on trouve
f ∈ F et φc ∈ G telles que h = f + φc. Notons que, pour tout r ∈ R,∫ 1

0
(h − φr)(x) dx =

∫ 1

0
h(x) dx − r.

En choisissant c =
∫ 1

0 h(x) dx et f = h − φc, il découle de l’égalité ci-dessus que∫ 1
0 f(x) dx = 0, c’est-à-dire f ∈ F . De plus, f + φc = (h − φc) + φc = h. On a ainsi

trouvé f ∈ F et φc ∈ G satisfaisant h = f + φc.



Exercice 2 Décomposer en éléments simples sur R la fraction rationnelle

5X + 1
X3 − X

.

Solution. On remarque d’abord que le degré du numérateur est strictement inférieur au degré
du dénominateur, donc cette fraction a partie entière nulle. On procède alors à la factorisation
du dénominateur

X3 − X = X(X2 − 1) = X(X − 1)(X + 1).

La DES sera donc de la forme

a

X
+ b

X − 1 + c

X + 1 = 5X + 1
X3 − X

, (∗)

où a, b et c sont des réels à déterminer. Pour calculer a, on multiplie par X à gauche et à droite
de cette égalité, et on évalue en 0 (la racine du polynôme X)

a =
[
a + bX

X − 1 + cX

X + 1

]
X=0

=
[ 5X + 1

(X − 1)(X + 1)

]
X=0

= −1.

De la même façon, pour calculer b on multiplie (∗) par X − 1 et on évalue en 1 (la racine de
X − 1)

b =
[ 5X + 1

X(X + 1)

]
X=1

= 3.

Enfin, pour calculer c on multiplie (∗) par X + 1 et on évalue en −1

c =
[ 5X + 1

X(X − 1)

]
X=−1

= −2.

On a ainsi trouvé
5X + 1
X3 − X

= − 1
X

+ 3
X − 1 − 2

X + 1 .

Exercice 3

1. Décomposer la fraction rationnelle X2 − 3
(X + 1)2(X2 + 1) en éléments simples sur R.

Solution. On remarque d’abord que le degré du numérateur est strictement inférieur au
degré du dénominateur, donc cette fraction a partie entière nulle. Le polynôme X2 + 1 est
irréductible sur R, car ses racines sont ±i. Il s’ensuit que la DES cherchée est de la forme

a

X + 1 + b

(X + 1)2 + cX + d

X2 + 1 = X2 − 3
(X + 1)2(X2 + 1) , (⋆)

avec a, b, c, d ∈ R à déterminer. Pour calculer b, on multiplie cette égalité par (X + 1)2 et
on évalue en −1

b =
[
a(X + 1) + b + cX + d

X2 + 1(X + 1)2
]

X=−1
=

[
X2 − 3

(X2 + 1)

]
X=−1

= −1.

Pour calculer c et d, on multiplie (⋆) par X2 + 1 et on évalue en i

ci + d =
[

a

X + 1(X2 + 1) + b

(X + 1)2 (X2 + 1) + cX + d

]
X=i

=
[

X2 − 3
(X + 1)2

]
X=i

= −4
2i

= 2i.



On trouve ainsi d + ci = 2i et, comme c et d sont réels, cela donne d = 0 et c = 2. Enfin,
pour calculer a, on multiplie (⋆) par X et on évalue la limite à +∞

lim
x→+∞

ax

x + 1︸ ︷︷ ︸
→a

+ −x

(x + 1)2︸ ︷︷ ︸
→0

+ 2x2

x2 + 1︸ ︷︷ ︸
→2

= lim
x→+∞

x3 − 3x

(x + 1)2(x2 + 1)︸ ︷︷ ︸
→0

,

d’où a + 2 = 0, c’est-à-dire a = −2. La DES cherchée est donc
X2 − 3

(X + 1)2(X2 + 1) = − 2
X + 1 − 1

(X + 1)2 + 2X

X2 + 1 .

2. Calculer l’intégrale ∫ 4

0

x2 − 3
(x + 1)2(x2 + 1) dx.

Solution. Par le point précédent et la linéarité de l’intégrale,∫ 4

0

x2 − 3
(x + 1)2(x2 + 1) dx = −2

∫ 4

0

1
x + 1 dx −

∫ 4

0

1
(x + 1)2 dx +

∫ 4

0

2x

x2 + 1 dx.

Or, ∫ 4

0

1
x + 1 dx =

[
ln(x + 1)

]4
0 = ln(5)

et ∫ 4

0

1
(x + 1)2 dx = −

[ 1
x + 1

]4

0
= −1

5 + 1 = 4
5 .

Ensuite, on remarque que la dernière intégrale est de la forme
∫ 4

0
f ′(x)
f(x) dx, où f(x) = x2 + 1,

et donc ∫ 4

0

2x

x2 + 1 dx =
[
ln(x2 + 1)

]4
0 = ln(17).

En mettant tout cela ensemble, on obtient enfin∫ 4

0

x2 − 3
(x + 1)2(x2 + 1) dx = ln(17) − 2 ln(5) − 4

5 .

Exercice 4 Montrer que

lim
n→+∞

∫ 1
2

0

xn

2 + cos x
dx = 0.

Solution. On a 1 ⩽ 2 + cos x, et donc pour 0 ⩽ x ⩽ 1
2 , on a :

0 ⩽
xn

2 + cos x
⩽

(1
2

)n

Donc
0 ⩽

∫ 1
2

0

xn

2 + cos x
⩽

∫ 1
2

0

(1
2

)n

=
(1

2

)n+1

Comme lim
n→+∞

(1
2

)n+1
= 0, alors on déduit que :

lim
n→+∞

∫ 1
2

0

xn

2 + cos x
dx = 0.

Exercice 5 Pour tout n ∈ N∗, on pose

In =
∫ 1

0

1
(x2 + 1)n

dx.



1. Calculer I1.
Solution.

I1 =
∫ 1

0

1
x2 + 1 dx =

[
arctan x

]1
0 = π

4 .

2. À l’aide d’une intégration par parties sur In, montrer que pour tout n ∈ N∗,

In+1 = 2n − 1
2n

In + 1
n2n+1 .

Solution. On fait une intégration par parties sur In, en prenant u(x) = 1
(x2+1)n et

v′(x) = 1. On a u′(x) = − 2nx
(x2+1)n+1 et v(x) = x. Donc

In =
∫ 1

0

1
(x2 + 1)n

=
[

x

(x2 + 1)n

]1

0
−

∫ 1

0
− 2nx2

(x2 + 1)n+1 dx

= 1
2n

+ 2n

∫ 1

0

x2

(x2 + 1)n+1 dx

= 1
2n

+ 2n

∫ 1

0

x2 + 1 − 1
(x2 + 1)n+1 dx

= 1
2n

+ 2n

∫ 1

0

1
(x2 + 1)n

dx − 2n

∫ 1

0

1
(x2 + 1)n+1 dx

= 1
2n

+ 2nIn − 2nIn+1

Alors, on a :
2nIn+1 = (2n − 1)In + 1

2n
.

Donc, on déduit :
In+1 = 2n − 1

2n
In + 1

n2n+1 .

3. En déduire la valeur de I2.
Solution. Par 2., pour n = 1, on a :

I2 = 1
2I1 + 1

22 = 1
2 × π

4 + 1
4 = π

8 + 1
4 .


