Examen final, session 2 du 28 juin

Durée 3 heures

Les documents, les téléphones, les calculatrices et les ordinateurs sont interdits. Toutes les réponses doivent être justifiées

Exercice 1. (5 points/40points)

Soit $\mathcal{B}=(e_1,e_2,e_3)$ la base canonique de \mathbb{R}^3 . Soit $f\colon\mathbb{R}^3\to\mathbb{R}^3$, l'application linéaire définie par $f(e_1)=e_1+e_2+e_3; \ f(e_2)=e_1-e_3; \ f(e_3)=3e_1+2e_2+e_3$

- 1. (1 point). Déterminer la matrice A de f dans la base canonique.
- 2. (2 points). Donner une base du noyau de f.
- 3. (2 points). Donner une base de l'image de f.

Exercice 2. (10,5 points/40 points)

Soit f l'endomorphisme de \mathbb{R}^2 dont la matrice dans la base canonique $\mathcal{B}_C = (e_1, e_2)$ est $A = \begin{pmatrix} -1 & 4 \\ -1 & 3 \end{pmatrix}$

- 1. (1 point). Déterminer un vecteur u_1 non nul tel que $f(u_1) = u_1$.
- 2. (1,5 points). Déterminer un vecteur $u_2 = (x, x)$ avec $x \in \mathbb{R}$, tel que $f(u_2) = u_1 + u_2$.
- 3. (1,5 points). Vérifier que $\mathcal{B} = (u_1, u_2)$ est une base de \mathbb{R}^2 et donner la matrice de passage P de \mathcal{B}_C à \mathcal{B}
- 4. (2 points). Donner la matrice T de f dans la base \mathcal{B} .
- 5. (2 points). Calculer T^n pour tout entier $n \ge 0$.
- 6. (2,5 points). Exprimer A^n en fonction de P et T^n , en déduire les coefficients de la matrice A^n .

Exercice 3. (6 points/ 40 points)

Dans \mathbb{R}^4 , on considère les sous-ensembles $F = \{(x, y, z, t) \in \mathbb{R}^4, 2x - y + z + 3t = 0\}$ et G = Vect((1, -2, 0, -3))

- 1. (2 points). Montrer que F est un sous-espace vectoriel de \mathbb{R}^4 .
- 2. (4 points). Montrer que F et G sont supplémentaires.

Exercice 4. (3 points/40 points)

Calculer

$$I = \int_1^2 9x^2 \ln(x) \, dx$$

Exercice 5. (6 points/40 points)

- 1. (1,5 points). Décomposer la fraction rationnelle $t \to \frac{t+2}{(t-1)^2}$ en éléments simples
- 2. (4,5 points). A l'aide du changement de variable $t = e^x$, calculer

$$J = \int_{1}^{2} \frac{e^{2x} + 2e^{x}}{e^{2x} - 2e^{x} + 1} dx$$

Exercice 6. (4 points/40 points)

On considère l'équation différentielle (E) $y'' - 4y' + 3y = (8x - 14)e^{-x}$

- 1. (1 point). Résoudre l'équation homogène y'' 4y' + 3y = 0.
- 2. (3 points). Résoudre (E).

Exercice 7. (7 points/40 points)

Soit f la fonction définie par

$$f(x) = \sqrt{4 + x}$$

- 1. (4 points). Déterminer le développement limité à l'ordre 2 en 0 de *f*. Indications : soit on pourra factoriser par 4 et utiliser une formule du cours, soit on pourra dériver *f* deux fois et utiliser la formule de Taylor-Young.
- 2. (1,5 point). Calculer f(x) (2 + x/4) à l'aide du développement limité, en déduire que la droite d'équation y = x/4 + 2 est tangente au graphe de f au voisinage de 0.
- 3. (1,5 point). Au voisinage de 0, préciser la position du graphe de f par rapport à la droite d'équation $y = \frac{x}{4} + 2$.