UE : Analyse 2 pour mathématiciens

Corrigé du contrôle continu nº 4

Mercredi 5 avril 2023 - Durée : 1 h 30

Question de cours.

Soit I un intervalle de \mathbf{R} . Soit $f: I \to \mathbf{R}$ et $x_0 \in I$. On suppose que f est dérivable et convexe sur I. On note \mathcal{C}_f la courbe représentative de f sur I.

- 1. Donner l'équation de la tangente à C_f au point d'abscisse x_0 . L'équation de la tangente à C_f au point d'abscisse x_0 est $y = f(x_0) + f'(x_0)(x - x_0)$.
- 2. Soit $x \in I$. Justifier que si $x \ge x_0$ alors $f'(x) \ge f'(x_0)$, et si $x \le x_0$ alors $f'(x) \le f'(x_0)$. Comme f est convexe, sa dérivée f' est croissante. Ainsi, si $x \ge x_0$ alors $f'(x) \ge f'(x_0)$, et si $x \le x_0$ alors $f'(x) \le f'(x_0)$.
- 3. On définit $g: I \to \mathbf{R}$, $x \mapsto f(x) (f(x_0) + f'(x_0)(x x_0))$. En étudiant la fonction g, montrer que \mathcal{C}_f est au-dessus de sa tangente au point d'abscisse x_0 .

La fonction g est la somme de f et d'une fonction affine donc g est dérivable sur I. De plus, pour tout $x \in I$, $g'(x) = f'(x) - f'(x_0)$.

Par la question précédente, on en déduit que pour tout $x \in I$, si $x \ge x_0$, alors $g'(x) \ge 0$, et si $x \le x_0$, alors $g'(x) \le 0$. Ainsi, g est décroissante sur $I \cap]-\infty, x_0]$ et croissante sur $I \cap]x_0, +\infty[$. On en déduit que pour tout $x \in I$, $g(x) \ge g(x_0)$. Comme $g(x_0) = f(x_0) - f(x_0) = 0$, g est positive sur I.

À la question 1, on a rappelé que l'équation de la tangente à C_f au point d'abscisse x_0 est $y = f(x_0) + f'(x_0)(x - x_0)$, on conclut donc que C_f est au-dessus de sa tangente au point d'abscisse x_0 .

Exercice 1. Les questions 1, 2 et 3 de cet exercice sont indépendantes.

1. Étudier la limite quand $x \to 0$ de $f(x) = \frac{\cos(2x) - 1 + 2x^2}{x^3}$. $\cos(2x) - 1 + 2x^2 \xrightarrow[x \to 0]{} 0$ donc on a une forme indéterminée à étudier. On écrit le développement limité à l'ordre 3 en 0 de $\cos(2x)$:

$$\cos(2x) = 1 - \frac{(2x)^2}{2!} + \mathop{o}_{x \to 0}(x^3) = 1 - 2x^2 + \mathop{o}_{x \to 0}(x^3)$$

donc $\cos(2x) - 1 + 2x^2 = \mathop{o}_{x \to 0}(x^3)$ et

$$f(x) = \frac{\cos(2x) - 1 + 2x^2}{x^3} = \mathop{o}_{x \to 0}(1)$$

Ainsi, $f(x) \xrightarrow[x \to 0]{} 0$.

2. (a) Soit $x \in [0, \frac{1}{2}]$. Écrire la formule de Taylor-Lagrange à l'ordre 2 entre 0 et x pour la fonction $t \mapsto \ln(1-t)$.

La fonction $t \mapsto 1 - t$ est de classe C^2 sur $[0, \frac{1}{2}]$, et pour tout $t \in [0, \frac{1}{2}]$, on a $1 - t \in [\frac{1}{2}, 1]$. Comme ln est de classe C^2 sur $]0, +\infty[$, on en déduit que la fonction $h: t \mapsto \ln(1 - t)$ est de classe C^2 sur $[0, \frac{1}{2}]$.

Par la formule de Taylor-Lagrange, il existe $c_x \in [0, x]$ tel que

$$h(x) = h(0) + h'(0)x + \frac{h''(c_x)}{2}x^2$$

De plus pour tout $t \in [0, \frac{1}{2}]$, $h'(t) = \frac{-1}{1-t}$ et $h''(t) = \frac{-1}{(1-t)^2}$ donc h(0) = 0, h'(0) = -1 et

$$h(x) = -x - \frac{1}{2(1 - c_x)^2}x^2$$

(b) En déduire que pour tout $x \in [0, \frac{1}{2}]$, $|\ln(1-x) + x| \le 2x^2$. Soit $x \in [0, \frac{1}{2}]$, on a par la question précédente,

$$|\ln(1-x) + x| = \left|\frac{-1}{2(1-c_x)^2}x^2\right| = \frac{1}{2(1-c_x)^2}x^2$$

De plus, $0 \le c_x \le x \le \frac{1}{2}$ donc $\frac{1}{2} \le 1 - c_x \le 1$. Ainsi, la fonction $t \mapsto t^2$ étant croissante sur \mathbf{R}^+ , on a $(1 - c_x)^2 \ge \left(\frac{1}{2}\right)^2 = \frac{1}{4} > 0$. Comme $t \mapsto 1/t$ étant décroissante sur $]0, +\infty[$, on obtient $\frac{1}{(1 - c_x)^2} \le 4$. Ainsi,

$$|\ln(1-x) + x| \le \frac{4}{2}x^2 = 2x^2$$

3. (a) Montrer que la fonction – sin est convexe sur $[0, \frac{\pi}{2}]$.

On note $a = -\sin A \log a$ est deux fois dérivable sur \mathbf{R} . Po

On note $g = -\sin$. Alors g est deux fois dérivable sur \mathbf{R} . Pour tout $x \in \mathbf{R}$, $g'(x) = -\cos x$, et $g''(x) = \sin x$. Ainsi, pour tout $x \in [0, \frac{\pi}{2}]$, $g''(x) \ge 0$. La fonction g est donc convexe sur $[0, \frac{\pi}{2}]$.

(b) En déduire que pour tout $t \in [0, 1]$, $\sin\left(t\frac{\pi}{2}\right) \ge t$. Soit $t \in [0, 1]$, par convexité de g sur $[0, \frac{\pi}{2}]$, on a

$$g\left((1-t)\times 0 + t\frac{\pi}{2}\right) \le (1-t)g(0) + tg\left(\frac{\pi}{2}\right)$$

Comme $g(0) = -\sin(0) = 0$ et $g\left(\frac{\pi}{2}\right) = -\sin\left(\frac{\pi}{2}\right) = -1$, on en déduit

$$-\sin\left(t\frac{\pi}{2}\right) \le -t$$

ce qui équivaut à

$$\sin\left(t\frac{\pi}{2}\right) \ge t$$

(c) En déduire que pour tout $x \in [0, \frac{\pi}{2}]$, $\sin(x) \ge \frac{2}{\pi}x$.

Soit $x \in [0, \frac{\pi}{2}]$, on pose $t = \frac{x}{\pi/2} = \frac{2}{\pi}x$. Alors $t \in [0, 1]$ et $x = t\frac{\pi}{2}$ donc par la question précédente, on a $\sin\left(t\frac{\pi}{2}\right) \ge t$, ce qui se réécrit

$$\sin(x) \ge \frac{2}{\pi}x$$

Exercice 2. Soit $f:]1, +\infty[\to \mathbf{R}, x \mapsto (x+1)e^{\frac{1}{x-1}}]$

1. Justifier que f est dérivable sur $]1, +\infty[$ et calculer f'. $x \mapsto \frac{1}{x-1}$ est dérivable sur $]1, +\infty[$ et exp est dérivable sur $]1, +\infty[$ donc par composition, $x \mapsto e^{\frac{1}{x-1}}$ est dérivable sur $]1, +\infty[$. De plus, $x \mapsto (x+1)$ est dérivable sur $]1, +\infty[$ donc par produit, f est dérivable sur $]1, +\infty[$. De plus pour tout $x \in]1, +\infty[$,

$$f'(x) = e^{\frac{1}{x-1}} \left(1 + (x+1) \times \frac{-1}{(x-1)^2} \right)$$

$$= \frac{e^{\frac{1}{x-1}}}{(x-1)^2} \left((x-1)^2 - (x+1) \right) = \frac{e^{\frac{1}{x-1}}}{(x-1)^2} (x^2 - 3x)$$

$$= \frac{e^{\frac{1}{x-1}}}{(x-1)^2} x(x-3)$$

2. Déterminer les limites de f en 1^+ et en $+\infty$ puis dresser le tableau de variations de f.

On a $\frac{1}{x-1} \underset{x \to 1^+}{\longrightarrow} +\infty$ donc $e^{\frac{1}{x-1}} \underset{x \to 1^+}{\longrightarrow} +\infty$ et comme $x+1 \underset{x \to 1^+}{\longrightarrow} 2$, on en déduit que $f(x) \underset{x \to 1^+}{\longrightarrow} +\infty$.

On a $\frac{1}{x-1} \underset{x \to +\infty}{\longrightarrow} 0$ donc $e^{\frac{1}{x-1}} \underset{x \to +\infty}{\longrightarrow} e^0 = 1$ et comme $x+1 \underset{x \to +\infty}{\longrightarrow} +\infty$, on en déduit que $f(x) \underset{x \to +\infty}{\longrightarrow} +\infty$.

Le calcul de f' à la question précédente montre que f(x) est du signe de x(x-3), on obtient donc le tableau de variation suivant :

x	1 3 +∞
f'(x)	- 0 +
f(x)	$+\infty$ $+\infty$ $4\sqrt{e}$

3. (a) Calculer le développement limité à l'ordre 2 quand $x \to +\infty$ de $\frac{1}{x-1}$.

Soit
$$x > 1$$
, on pose $h = \frac{1}{x}$, on a $h \underset{x \to +\infty}{\longrightarrow} 0$ et

$$\frac{1}{x-1} = \frac{1}{\frac{1}{h}-1} = \frac{h}{1-h}$$

$$= h\left(1+h+o_{h\to 0}(h)\right)$$

$$= h+h^2+o_{h\to 0}(h^2)$$

$$= \frac{1}{x} + \frac{1}{x^2} + o_{x\to +\infty}\left(\frac{1}{x^2}\right)$$

(b) Déterminer des constantes réelles a,b et c telles que f admette un développement asymptotique $en +\infty$ de la forme :

$$f(x) = ax + b + \frac{c}{x} + \underset{x \to +\infty}{o} \left(\frac{1}{x}\right), \text{ avec } c > 0.$$

3

On utilise le DL obtenu à la question précédente :

$$f(x) = (x+1) \exp\left(\frac{1}{x} + \frac{1}{x^2} + o_{x \to +\infty}\left(\frac{1}{x^2}\right)\right)$$

Or, $u = \frac{1}{x} + \frac{1}{x^2} + o \left(\frac{1}{x^2}\right) \xrightarrow[x \to +\infty]{} 0$ donc on peut utiliser le développement de e^u quand $u \to 0$; à l'ordre 2, on a

$$e^{u} = 1 + u + \frac{u^{2}}{2} + \underset{u \to 0}{o}(u^{2})$$

donc

$$f(x) = (x+1)\left(1 + \frac{1}{x} + \frac{1}{x^2} + \frac{1}{2x^2} + \frac{o}{x \to +\infty}\left(\frac{1}{x^2}\right)\right)$$

$$= (x+1)\left(1 + \frac{1}{x} + \frac{3}{2x^2} + \frac{o}{x \to +\infty}\left(\frac{1}{x^2}\right)\right)$$

$$= x+1 + \frac{3}{2x} + 1 + \frac{1}{x} + \frac{o}{x \to +\infty}\left(\frac{1}{x}\right)$$

$$= x+2 + \frac{5}{2x} + \frac{o}{x \to +\infty}\left(\frac{1}{x}\right)$$

4. Déterminer l'équation d'une droite asymptote à la courbe représentative de f, C_f , au voisinage de $+\infty$. Étudier la position relative de cette droite et C_f au voisinage de $+\infty$.

On a

$$f(x) - (x+2) = \frac{5}{2x} + \underset{x \to +\infty}{o} \left(\frac{1}{x}\right)$$

$$\underset{x \to +\infty}{\sim} \frac{5}{2x}$$

donc $f(x) - (x+2) \underset{x \to +\infty}{\longrightarrow} 0$: la droite (D) d'équation y = x+2 est donc asymptote à C_f au voisinage de $+\infty$.

De plus, f(x) - (x+2) est du signe de $\frac{5}{2x}$ au voisinage de $+\infty$ donc positif. On en déduit que C_f est au-dessus de (D) au voisinage de $+\infty$.

Exercice 3.

Soit $f: [0,1] \to \mathbf{R}$ une fonction de classe C^2 sur [0,1] telle que f(0) = 0, f'(0) = 0, f(1) = 1 et f'(1) = 0.

On définit $g: [0,1] \to \mathbf{R}, \ x \mapsto f(1-x) - f(x).$

- 1. Justifier que g est bien définie et de classe C^2 sur [0,1]. Pour tout $x \in [0,1]$ on a $1-x \in [0,1]$ donc g est bien définie sur [0,1]. De plus, f et $x \mapsto 1-x$ sont de classe C^2 sur [0,1] donc g est de classe C^2 sur [0,1].
- 2. Calculer g' et g'' en fonction des dérivées de f. Pour tout $x \in [0, 1]$,

$$g'(x) = -f'(1-x) - f'(x)$$

$$g''(x) = f''(1-x) - f''(x)$$

3. Calculer g(0), g'(0) et $g(\frac{1}{2})$.

On a

$$g(0) = f(1) - f(0) = 1 - 0 = 1$$

$$g'(0) = -f'(1) - f'(0) = -0 - 0 = 0$$

$$g\left(\frac{1}{2}\right) = f\left(\frac{1}{2}\right) - f\left(\frac{1}{2}\right) = 0$$

4. En utilisant la formule de Taylor-Lagrange, montrer qu'il existe $c \in]0, \frac{1}{2}[$ tel que g''(c) = -8. Comme g est de classe C^2 sur [0,1], par la formule de Taylor-Lagrange, il existe $c \in]0, \frac{1}{2}[$ tel que

$$g\left(\frac{1}{2}\right) = g(0) + g'(0) \times \frac{1}{2} + \frac{g''(c)}{2} \times \left(\frac{1}{2}\right)^2$$

donc
$$0 = 1 + \frac{g''(c)}{8}$$
 et $g''(c) = -8$.

5. En déduire qu'il existe $\alpha \in [0,1]$ tel que $|f''(\alpha)| \ge 4$. Supposons par l'absurde que pour tout $\alpha \in [0,1], |f''(\alpha)| < 4$. Alors, on a

$$|g''(c)| = |f''(1-c) - f''(c)|$$

$$\leq |f''(1-c)| + |f''(c)| \quad \text{par inégalité triangulaire}$$

$$< 4+4=8$$

ce qui est une contradiction. Ainsi, il existe $\alpha \in [0,1]$ tel que $|f''(\alpha)| \geq 4$.