UE : Analyse 2 pour mathématiciens

Contrôle continu nº 2

Mercredi 1^{er} mars 2023 - Durée : 1H30

Question de cours. Énoncer le théorème de Rolle.

Exercice d'application du cours. Dans toute cette partie, $f: I \to \mathbf{R}$ est une fonction dérivable, avec $I \subset \mathbf{R}$ précisé à chaque question.

1. On suppose ici $I = \mathbf{R}$. Montrer soigneusement qu'on a l'implication suivante :

$$\left[\forall x \in I, \ f'(x) > 0\right] \implies \left[f \text{ est strictement croissante sur } I\right].$$
 (\star)

<u>Indication</u>: pour x < y, on pourra appliquer le théorème des accroissements finis sur [x, y].

- 2. On suppose maintenant $I = \mathbf{R}^*$. L'implication (**) est-elle vraie en général? Justifier.
- 3. Réciproquement, si f est une fonction strictement croissante sur $I = \mathbf{R}$, a-t-on nécessairement que, pour tout $x \in I$, f'(x) > 0? Justifier.

Exercice 1. Les questions de cet exercice sont indépendantes.

- 1. Soit $f: \mathbf{R} \to \mathbf{R}$ une fonction dérivable telle que f(0) > 0, f(1) < 0 et f(2) > 0. Montrer qu'il existe $c \in \mathbf{R}$ tel que f'(c) = 0.
- 2. Donner un équivalent simple quand $x \to +\infty$ de $f(x) = 2^x + x^7 + e^{8x}$.
- 3. Donner un équivalent simple quand $x \to +\infty$ de $f(x) = \sqrt{x + \sin(x^2)}$.

Exercice 2. On considère les fonctions

On rappelle que 2 < e < 3 et $\ln 2 < 1$.

- 1. Étude de la fonction g.
 - (a) Étudier la limite de g en $+\infty$.
 - (b) Dresser le tableau de variation de g.
- 2. (a) Montrer qu'il existe un unique a > 0 tel que g(a) = 0.
 - (b) Montrer que 1 < a < 2.
- 3. (a) Montrer que l'équation f(x) = x admet a pour unique solution strictement positive.
 - (b) Montrer que f(1) > 1.
- 4. Dresser le tableau de variation de f en faisant apparaître le réel a.
- 5. Montrer que pour tout $x \in [1, a], |f'(x)| \leq \frac{2}{e}$.

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=1$ et, pour tout $n\in\mathbb{N}$, $u_{n+1}=f(u_n)$.

6. Montrer que, pour tout $n \in \mathbb{N}$, $u_n \in [1, a]$.

7. (a) Montrer que, pour tout $n \in \mathbb{N}$, on a

$$|u_{n+1} - a| \le \left(\frac{2}{e}\right)|u_n - a|.$$

- (b) En déduire que, pour tout $n \in \mathbf{N}$, $|u_n a| \le \left(\frac{2}{e}\right)^n$.
- (c) Montrer la convergence de $(u_n)_{n \in \mathbb{N}}$ vers a.

Exercice 3.

- 1. La fonction $g \colon \mathbf{R} \to \mathbf{R}, \ x \mapsto |x|$ est-elle dérivable en 0 ? Justifier.
- 2. Soit $f \colon \mathbf{R} \to \mathbf{R}$ donnée par $f(x) = (1 |x|)\sqrt{1 + 2|x|}$.
 - (a) Montrer que f est bien définie et continue sur \mathbf{R} .
 - (b) Montrer que f est dérivable sur \mathbf{R}^* .
 - (c) Montrer que pour tout $x \in \mathbf{R}^*$, on a

$$f'(x) = \frac{-3x}{\sqrt{1+2|x|}}$$

- (d) On se propose enfin d'étudier la dérivabilité de f en 0.
 - i. Étudier l'existence de la limite de f'(x) quand $x \to 0$, $x \ne 0$.
 - ii. Montrer que f est dérivable en 0 et donner f'(0).