L1 Math-Info UE : Analyse 2

CC1 nº 1

Mercredi 8 février 2023 - Durée : 45min

Question de cours.

Soit f et g deux fonctions définies au voisinage de a, et $\ell \in \mathbf{R}$. On suppose $f(x) \underset{x \to a}{\sim} g(x)$ et $\lim_{x \to a} g(x) = \ell$. Montrer que $\lim_{x \to a} f(x) = \ell$.

Exercice 1.

Soit $x \in \mathbf{R}$, on pose, pour tout $n \in \mathbf{N}$, $x_n = \frac{\lfloor 10^n x \rfloor}{10^n}$.

- 1. Montrer que, pour tout $n \in \mathbb{N}$, $x_n \le x < x_n + \frac{1}{10^n}$.
- 2. Montrer que la suite $(x_n)_{n \in \mathbb{N}}$ converge vers x.
- 3. Calculer l'approximation décimale par défaut à 10^{-2} près de $\frac{27}{13}$.

Exercice 2. Déterminer la limite éventuelle de la suite définie pour tout $n \in \mathbb{N}$ comme suit :

$$u_n = \frac{2^n + \sin n}{3^n + \sin n}$$

Exercice 3.

- 1. Montrer que pour tout $x \in [-1, 1], |1 + x + x^2 + x^3| \le 4$.
- 2. En déduire que pour tout $x \in [-1, 1], |1 x^4| \le 4|1 x|$.

Exercice 4. Pour chacune des propositions suivantes, décider si elle est vraie ou fausse. Justifier.

1.
$$x^2 + 1 = \underset{x \to +\infty}{O}(x^2),$$

$$3. \ln x = \underset{x \to +\infty}{o}(x),$$

2.
$$x = \underset{x \to 0}{o}(e^x),$$

4.
$$\ln(1+x) \sim x$$

Exercice 5. Pour tout x réel non nul, on définit $f(x) = \lfloor x + \frac{2}{x} \rfloor$. Déterminer, si elle existe, la limite suivante :

$$\lim_{x \to 0} x f(x).$$