L1 Math-Info UE : Analyse 2

Corrigé du CC nº 1

Mercredi 8 février 2023 - Durée : 45min

Question de cours.

Soient f et g deux fonctions définies au voisinage de a, et $\ell \in \mathbf{R}$. On suppose $f(x) \underset{x \to a}{\sim} g(x)$ et $\lim_{x \to a} g(x) = \ell$. Montrer que $\lim_{x \to a} f(x) = \ell$.

On a $f(x) \underset{x \to a}{\sim} g(x)$, c'est à dire qu'il existe une fonction h définie au voisinage de a telle que f(x) = g(x) h(x) avec $\lim_{x \to a} h(x) = 1$. Or $\lim_{x \to a} g(x) = \ell$, donc par produit de limites $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) h(x) = \ell$.

Exercice 1.

Soit $x \in \mathbf{R}$, on pose, pour tout $n \in \mathbf{N}$, $x_n = \frac{\lfloor 10^n x \rfloor}{10^n}$.

- 1. Montrer que, pour tout $n \in \mathbb{N}$, $x_n \le x < x_n + \frac{1}{10^n}$.
- 2. Montrer que la suite $(x_n)_{n \in \mathbb{N}}$ converge vers x.
- 3. Calculer l'approximation décimale par défaut à 10^{-2} près de $\frac{27}{13}$.
- 1. Soit $n \in \mathbb{N}$, par définition de la partie entière, on a

$$|10^n x| \le 10^n x < |10^n x| + 1$$

En divisant par $10^n > 0$, on obtient

$$x_n = \frac{\lfloor 10^n x \rfloor}{10^n} \le x < \frac{\lfloor 10^n x \rfloor + 1}{10^n} = x_n + \frac{1}{10^n}$$

d'où le résultat.

2. Pour tout $n \in \mathbb{N}$, on a

$$0 \le x - x_n \le \frac{1}{10^n}$$

Or $\lim_{n\to+\infty}\frac{1}{10^n}=0$. Ainsi, d'après le théorème des gendarmes, on a bien $\lim_{n\to+\infty}x_n=x$.

3. Dans cette question, $x = \frac{27}{13}$. L'approximation de x par défaut à 10^{-2} est x_2 . En effet, on a : $x_2 \le x < x_2 + 10^{-2}$.

On utilise l'algorithme vu en cours pour calculer x_2 :

$$27 = 2 \times 13 + 1$$

 $10 \times 1 = 0 \times 13 + 10$
 $10 \times 10 = 7 \times 13 + 9$

Ainsi, l'approximation de $\frac{27}{13}$ par défaut à 10^{-2} est 2,07.

Exercice 2. Déterminer la limite éventuelle de la suite définie pour tout $n \in \mathbb{N}$ comme suit :

$$u_n = \frac{2^n + \sin n}{3^n + \sin n}$$

Pour tout $n \in \mathbb{N}$, en factorisant au numérateur par 2^n et au dénominateur par 3^n , on obtient

$$u_n = \frac{2^n + \sin n}{3^n + \sin n} = \frac{2^n}{3^n} \frac{1 + \frac{\sin n}{2^n}}{1 + \frac{\sin n}{3^n}} = \left(\frac{2}{3}\right)^n \frac{1 + \frac{\sin n}{2^n}}{1 + \frac{\sin n}{3^n}}.$$

Or pour tout $n \in \mathbf{N}$,

$$0 \le \left| \frac{\sin n}{3^n} \right| = \frac{|\sin n|}{3^n} \le \frac{1}{3^n} = \left(\frac{1}{3}\right)^n$$

 $\text{Comme } \left| \frac{1}{3} \right| < 1, \ \lim_{n \to +\infty} \left(\frac{1}{3} \right)^n = 0, \ \text{et d'après le théorème des gendarmes, on a } \lim_{n \to +\infty} \frac{\sin n}{3^n} = 0.$

De même, on a $\lim_{n \to +\infty} \frac{\sin n'}{2^n} = 0$.

De plus, $\left|\frac{2}{3}\right| < 1$, donc $\lim_{n \to +\infty} \left(\frac{2}{3}\right)^n = 0$.

Finalement, par somme, quotient et produit de limites, on a

$$\lim_{n\to\infty} u_n = 0$$

Exercice 3.

- 1. Montrer que pour tout $x \in [-1, 1], |1 + x + x^2 + x^3| \le 4$.
- 2. En déduire que pour tout $x \in [-1, 1], |1 x^4| \le 4|1 x|$.
- 1. Pour tout $x \in [-1,1]$, on a $|x| \le 1$, et l'inégalité triangulaire donne

$$|1 + x + x^2 + x^3| \le |1| + |x| + |x|^2 + |x|^3 \le 4.$$

- 2. Soit $x \in [-1, 1]$.
 - Pour $x \neq 1$, la somme géométrique donne

$$\frac{|1 - x^4|}{|1 - x|} = |1 + x + x^2 + x^3|$$

D'après la question précédente et en multipliant par |1-x|>0, on obtient

$$|1 - x^4| \le 4|1 - x|.$$

— Pour x = 1, on a $|1 - x^4| = |1 - x| = 0$, donc la formule est également vérifiée.

Exercice 4. Pour chacune des propositions suivantes, décider si elle est vraie ou fausse. Justifier.

2

1.
$$x^2 + 1 = \underset{x \to +\infty}{O}(x^2)$$
,

3.
$$\ln x = \underset{x \to +\infty}{o}(x),$$

2.
$$x = \underset{x \to 0}{o} (e^x),$$

4.
$$\ln(1+x) \sim x$$
.

1. On a

$$x^2+1=x^2\left(1+\underbrace{\frac{1}{x^2}}_{\text{Born\'e au voisinage de }+\infty}\right)$$

En effet, $1 + \frac{1}{x^2} \xrightarrow[x \to 0]{} 1$ donc $1 + \frac{1}{x^2}$ a une limite finie en 0 et est donc borné au voisinage de 0. On a donc bien $x^2 + 1 = \underset{x \to +\infty}{O}(x^2)$

- 2. On a $x \xrightarrow[x \to 0]{} 0$ et $e^x \xrightarrow[x \to 0]{} 1$ donc $\lim_{x \to 0} \frac{x}{e^x} = 0$. On a donc bien $x = \underset{x \to 0}{o} (e^x)$.
- 3. On a $\lim_{x\to +\infty} \frac{\ln(x)}{x} = 0$ d'après le théorème de comparaison (croissances comparées). Le résultat est donc vrai.
- 4. On a $\lim_{x\to 0}\frac{\ln(1+x)}{x}=1$ (résultat de cours : le quotient étudié est le taux d'accroissement de $x\mapsto \ln(1+x)$ en 0 et $x\mapsto \ln(1+x)$ est dérivable en 0, de dérivée 1), l'équivalence est donc vraie.

Exercice 5. Pour tout x réel non nul, on définit $f(x) = \lfloor x + \frac{2}{x} \rfloor$. Déterminer, si elle existe, la limite suivante:

$$\lim_{x \to 0} x f(x).$$

Soit $x \in \mathbb{R}^*$. Par définition de la partie entière, on a

$$x + \frac{2}{x} - 1 < f(x) \le x + \frac{2}{x} < f(x) + 1.$$

On considère tout d'abord x > 0. En multipliant par x, on obtient

$$x^2 + 2 - x < xf(x) \le x^2 + 2$$

De plus, $\lim_{x\to 0^+} x^2 + 2 = \lim_{x\to 0^+} x^2 + 2 - x = 2$ donc, d'après le théorème des gendarmes $\lim_{x\to 0^+} xf(x) = 2$. De même, en multipliant pas x < 0, on obtient

$$x^2 + 2 - x > xf(x) \ge x^2 + 2$$

Le théorème des gendarmes donne alors $\lim_{x\to 0^-} xf(x) = 2$ Finalement, on a

$$\lim_{x \to 0} x f(x) = 2.$$