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Exercice 1
Comme deg F = 1 − 3 = −2 < 0, la partie entière dans la décomposition en éléments simples de F est nulle. Il
existe donc a, b, c ∈ R tels que

F (X) = 5X − 4
(X + 1)(X − 2)2 = a

X + 1 + b

X − 2 + c

(X − 2)2 .

Si on multiplie cette égalité par X + 1 puis qu’on évalue en X = −1, on trouve a = −5 − 4
(−1 − 2)2 = −1.

De même, si on multiplie par (X − 2)2 puis qu’on évalue en X = 2, on trouve c = 10 − 4
2 + 1 = 2.

On a donc
5X − 4

(X + 1)(X − 2)2 = −1
X + 1 + b

X − 2 + 2
(X − 2)2 .

On peut par exemple évaluer en X = 0, ce qui donne

−4
4 = −1 − b

2 + 2
4 ,

d’où l’on déduit b = 1. Ainsi, on a

F (X) = −1
X + 1 + 1

X − 2 + 2
(X − 2)2

Exercice 2
1. Comme sh x = x + x3

6 + o(x4), on écrit ln(1 + sh x) = ln
(

1 + x + x3

6 + o(x4)
)

et on applique la formule de

composition des développements limités :

ln(1 + sh x) = ln
(

1 + x + x3

6 + o(x4)
)

=
(

x + x3

6

)
− 1

2

(
x + x3

6

)2

+ 1
3

(
x + x3

6

)3

− 1
4

(
x + x3

6

)4

+ o(x4)

= x + x3

6 − 1
2

(
x2 + x4

3

)
+ x3

3 − x4

4 + o(x4).

En simplifiant cette expression, on trouve bien ce qui était demandé :

ln(1 + sh x) = x − x2

2 + x3

2 − 5x4

12 + o(x4)

2. De même, on calcule

cos(sin x) = cos
(

x − x3

6 + o(x4)
)

= 1 − 1
2

(
x − x3

6

)2

+ 1
24

(
x − x3

6

)4

+ o(x4)

= 1 − 1
2

(
x2 − x4

3

)
+ x4

24 + o(x4)

= 1 − x2

2 + 5x4

24 + o(x4).



En utilisant ce résultat et celui de la question 1, on en déduit :

f(x) =
x2

2 − x3

2 + 5x4

12 + o(x4)
x2

2 − 5x4

24 + o(x4)

=
1 − x + 5x2

6 + o(x2)
1 − 5x2

12 + o(x2)

=
(

1 − x + 5x2

6 + o(x2)
) (

1 + 5x2

12 + o(x2)
)

= 1 + 5x2

12 − x + 5x2

6 + o(x2).

Finalement, on a

f(x) = 1 − x + 5x2

4 + o(x2)

Problème
1. Multiplions les deux membres de l’égalité P (X)

Q(X) = λ

X − a
+ µ

(X − a)2 + G(X) par (X − a)2 :

(X − a)2 P (X)
Q(X) = λ(X − a) + µ + (X − a)2G(X).

Comme on sait que Q(X) = (X − a)2R(X), on a

P (X)
R(X) = λ(X − a) + µ + (X − a)2G(X).

Remplaçons maintenant X par a + h :

P (a + h)
R(a + h) = λh + µ + h2G(a + h).

Comme a n’est pas un pôle de G, la fonction associée à G est bien définie en a. Ainsi, la limite de G(a + h)
lorsque h → 0 existe et est finie. Par conséquent, hG(a + h) → 0 et donc h2G(a + h) = o(h) lorsque h → 0. Cela
montre donc que

P (a + h)
R(a + h) = µ + λh + o(h) lorsque h → 0

2.(a) Les fonctions x 7→ P (x) et x 7→ R(x) sont définies et dérivables au voisinage de a car sont des fonctions
polynomiales. De plus, puisque R ne s’annule pas en a, la fonction x 7→ P (x)/R(x) est également définie et
dérivable au voisinage de a. On peut donc appliquer la formule de Taylor-Young, qui s’écrit

P

R
(a + h) = P

R
(a) +

(
P

R

)′

(a) h + o(h) lorsque h → 0,

c’est-à-dire

P (a + h)
R(a + h) = P (a)

R(a) + P ′(a)R(a) − P (a)R′(a)
R(a)2 h + o(h) lorsque h → 0

2.(b) En comparant les résultats des questions 1. et 2.(a), et par unicité des développements limités, on obtient
immédiatement

λ = P ′(a)R(a) − P (a)R′(a)
R(a)2 et µ = P (a)

R(a)



3.(a) Écrivons la formule de Taylor pour les polynômes pour Q(X) au point a :

Q(X) = Q(a) + Q′(a)(X − a) + Q′′(a)
2! (X − a)2 + Q′′′(a)

3! (X − a)3 + · · · + Q(m)(a)
m! (X − a)m.

Or, comme a est un pôle de multiplicité 2 de P/Q, on a Q(a) = Q′(a) = 0, d’où

Q(X) = (X − a)2
(

Q′′(a)
2! + Q′′′(a)

3! (X − a) + · · · + Q(m)(a)
m! (X − a)m−2

)
.

Enfin, comme R(X) est défini par Q(X) = (X − a)2R(X), il vient

R(X) = Q′′(a)
2! + Q′′′(a)

3! (X − a) + · · · + Q(m)(a)
m! (X − a)m−2

3.(b) L’égalité que l’on vient d’obtenir donne R(a) = Q′′(a)
2! quand on y fait X = a. Par dérivation, elle donne

R′(X) = Q′′′(a)
3! + Q(4)

4! · 2(X − a) + · · · + Q(m)

m! (m − 2)(X − a)m−3,

d’où R′(a) = Q′′′(a)
3! quand on évalue en X = a. On remplace ces expressions dans les formules trouvées à la

question 2.(b) et on arrange un peu les fractions trouvées. On trouve alors les expressions demandées :

λ = 6P ′(a)Q′′(a) − 2P (a)Q′′′(a)
3Q′′(a)2 et µ = 2P (a)

Q′′(a)

4. Posons P (X) = 1 et Q(X) = (Xn − 1)2. Les pôles de P/Q sont les racines de l’unité ωk = e2ikπ/n (0 ⩽ k ⩽
n − 1), ils sont tous doubles. Comme deg(P/Q) < 0, La décomposition en éléments simples de P/Q est donc de
la forme

P (X)
Q(X) =

n−1∑
k=0

(
λk

X − ωk
+ µk

(X − ωk)2

)
,

avec λ0, . . . , λn−1, µ0, . . . , µn−1 ∈ C. Soit k ∈ J0, n − 1K. On applique maintenant les formules trouvées précé-
demment : étant donné que P (ωk) = 1 et P ′(X) = 0, on a

λk = − 2Q′′′(ωk)
3Q′′(ωk)2 et µk = 2

Q′′(ωk) .

Or, comme Q(X) = X2n − 2Xn + 1, on a

Q′(X) = 2n
(
X2n−1 − Xn−1)

,

Q′′(X) = 2n
(
(2n − 1)X2n−2 − (n − 1)Xn−2)

,

Q′′′(X) = 2n
(
(2n − 1)(2n − 2)X2n−3 − (n − 1)(n − 2)Xn−3)

.

Ainsi, Q′′(ωk) = 2n2ω−2
k et Q′′′(ωk) = 6n2(n − 1)ω−3

k , d’où finalement (après calculs)

λk = 1 − n

n2 ωk et µk = ω2
k

n2 .

Finalement, la décomposition en éléments simples sur C de 1/(Xn − 1)2 est

1
(Xn − 1)2 = 1

n2

n−1∑
k=0

[
(1 − n)ωk

X − ωk
+ ω2

k

(X − ωk)2

]


