Feuille 7: Fractions rationnelles

Exercice 1. Donner la forme de la décomposition en éléments simples, sur \mathbb{R} puis sur \mathbb{C} , des fractions rationnelles suivantes.

a)
$$\frac{1}{(X+1)(X-2)}$$
, $\frac{X}{(X+1)(X-2)}$, $\frac{X}{X^2-1}$.

b)
$$\frac{X+1}{X^2+1}$$
, $\frac{X^2}{X^3-1}$.

b)
$$\frac{X+1}{X^2+1}$$
, $\frac{X^2}{X^3-1}$.
c) $\frac{X-1}{X^2(X^2+1)}$, $\frac{3}{(X^2+X+1)(X-1)^2}$.

d)
$$\frac{X^4}{X^2 - 3X + 2}$$
, $\frac{X^4 - X + 2}{(X - 1)(X^2 - 1)}$.

Indication 1. a) Les racines sont réelles et simples. On peut alors trouver la décomposition par identification.

- b) Même principe dans C.
- c) Attention aux racines multiples.
- d) Commencer par une division euclidienne.

Exercice 2. Décomposer en éléments simples sur \mathbb{R} la fraction

$$F(X) = \frac{1}{(X^2 + 1)^2 - X^2}.$$

Indication 2. Noter que F est paire, i.e. F(X) = F(-X).

Exercice 3. Démontrer qu'il n'existe pas de fraction rationnelle E telle que $E^2 = X$.

Indication 3. On pourra commencer par regarder les degrés.

Exercice 4. Décomposer en éléments simples sur \mathbb{R} la fraction rationnelle $R_n(X) = \frac{n!}{X(X+1)\cdots(X+n)!}$ où $n \in \mathbb{N}$.

Indication 4. On pourra utiliser le fait que les pôles de R_n sont simples.

Exercice 5. Soient p et q deux entiers naturels premiers entre eux. Déterminer les racines et pôles de la fraction rationnelle $\frac{(X^p-1)}{(X^q-1)}$ en précisant leur ordre de multiplicité.

Indication 5. Les racines de X^n-1 sont les racines n-ième de l'unité ω^k pour $k=0,\ldots,n-1$ où $w=e^{2i\pi/n}$ et $n \in \mathbb{N}^*$. On pourra aussi penser à l'identité de Bezout pour deux entiers premiers entre eux.

Exercice 6. Soit $S_n = \sum_{k=2}^{n} \frac{1}{k^2 - 1}, \ n \ge 2.$

- 1. Déterminer S_n en fonction de n pour tout $n \geq 2$.
- 2. En déduire sa limite.
- 3. Répéter les questions 1. et 2. pour la suite (S_n) définie par

$$S_n = \sum_{k=2}^n \frac{1}{k(k+1)(k+2)}, \ \forall n \ge 2$$

4. Faire de même pour la suite (S_n) définie par $S_n = \sum_{k=1}^n \frac{4k}{4k^4 + 1}, \ \forall n \in \mathbb{N}^*.$

Indication 6. 1. Faire une décomposition en éléments simples puis penser aux sommes téléscopiques.

4. Remarquer que $2(k+1)^2 - 2(k+1) + 1 = 2k^2 + 2k + 1$.

Exercice 7. Pour chacune des fonctions suivantes donner leur ensemble de définition, déterminer les équations des asymptotes en $\pm \infty$ puis étudier la position du graphe de la fonction par rapport aux asymptotes au voisinage de $\pm \infty$.

1.
$$f: x \mapsto \frac{x^2 + 2x + 5}{x^2 - 3x + 2}$$

2.
$$g: x \mapsto \frac{2x^3 + x^2 - x + 1}{x^2 - 3x + 2}$$

1.
$$f: x \mapsto \frac{x^2 + 2x + 5}{x^2 - 3x + 2}$$
 2. $g: x \mapsto \frac{2x^3 + x^2 - x + 1}{x^2 - 3x + 2}$ 3. $h: x \mapsto \frac{2x^4 + x^3 + 3x^2 - 6x + 1}{2x^3 - x^2}$

Indication 7. Commencer par décomposer en éléments simples les polynômes associés.

Exercice 8. 1. Montrer la relation

$$\cos((n+1)x) + \cos((n-1)x) = 2\cos(x)\cos(nx),$$

pour tout $x \in \mathbb{R}$ et $n \ge 1$.

2. En déduire que pour tout $n \in \mathbb{N}$ il existe un unique polynôme P_n tel que

$$P_n(\cos(x)) = \cos(nx), \ \forall x \in \mathbb{R}$$
 (1)

- 3. Donner $\deg(P_0)$ et $\deg(P_1)$. Montrer que P_n est de degré n et déterminer son terme dominant.
- 4. En utilisant la relation (1) déterminer les racines de P_n pour tout n.
- 5. Pour $n \ge 1$, décomposer en éléments simples sur \mathbb{R} la fraction $\frac{1}{P_n}$.

1. Utiliser les formules de trigonométrie. Indication 8.

- 2. Commencer avec P_0 et P_1 puis construire P_n par récurrence.
- 3. Utiliser la relation de récurrence trouvée à la question précédente.
- 4. Les racines sont $\xi_k = \cos\left(\frac{(2k+1)\pi}{2n}\right)$ pour k variant de 0 à n-1.