	D	.GHIT	-II A	\mathbf{N}
B = 10	BE 1	1781	-	11//11
D = 1		. (1)	11/	

Note: 13.5/20 (score total: 21/31)

-	-	-	-	-	

+115/1/1+

Veillez à bien noircir les cases. 1 1 2 2002 2 2 Codez votre numéro d'étudiant ci-contre ---3 3 3 3 3 et écrivez votre nom et prénom ci-dessous : 4 4 4 4 4 4 Nom et prénom : 5 5 5 5 100 Ben Belghith Amir 6 6 6 6 7 Attention à ne pas vous tromper, 8 toute erreur invalide la copie! 9 9 9

Fdm2 - Printemps 2019

Règlement – L'épreuve dure 90 minutes. Les calculatrices sont interdites. Les téléphones portables doivent être éteints. Il n'est admis de consulter aucun document. Les questions ont une seule bonne réponse, qui vaut 2 points. Cochez une seule réponse par question.

Question 1 Soient $\mathcal{F}_1 = (u_1, u_2)$, $\mathcal{F}_2 = (u_2, u_3, u_4)$, $\mathcal{F}_3 = (u_1, u_2, u_3)$, $\mathcal{F}_4 = (u_1, u_2, u_3, u_4)$ quatre familles de vecteurs de \mathbb{R}^3 avec $u_1 = (1, 1, 0)$, $u_2 = (1, 0, 1)$, $u_3 = (0, 1, 1)$, $u_4 = (1, 1, 2)$.

Alors

4/4

0/3

aucune de ces familles n'est une base de \mathbb{R}^3 . \square \mathcal{F}_4 est une base de \mathbb{R}^3 . \square \mathcal{F}_1 est une base de \mathbb{R}^3 . \square \mathcal{F}_2 est une base de \mathbb{R}^3 .

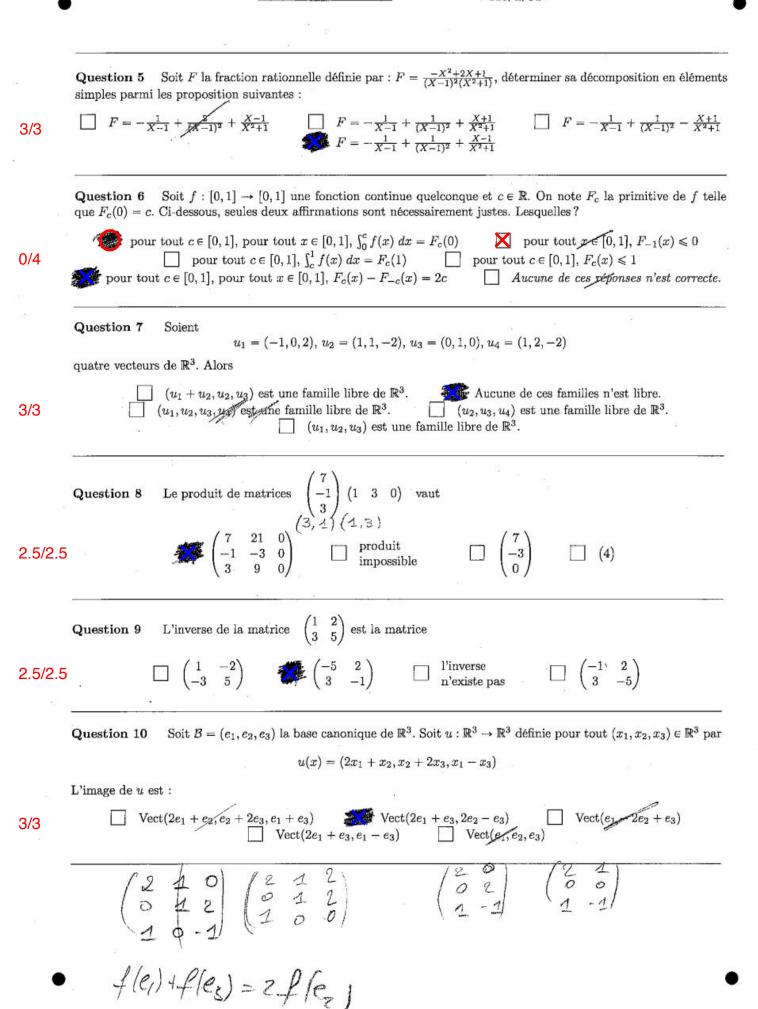
Question 2 Soit $\beta = (e_1, e_2, e_3)$ la base canonique de $\underline{\mathbb{R}}^3$ et $\beta' = (e'_1, e'_2, e'_3)$ $P = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & 1 \\ 0 & -1 & -1 \end{pmatrix}$ la matrice de passage de β à β' . Soit u l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est :

 $A = \begin{pmatrix} -3 & -5 & -5 \\ 2 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix} \quad \text{Calculer } D = P^{-1}AP$

Question 3 L'intégrale $\int_0^3 x e^{x^2} dx$, calculée avec le changement de variable $u = x^2$, est égale à

Question 4 Quel est le développement limité à l'ordre 2 en 0 de la fonction f définie par

$$f(x) = \frac{1 + e^{-x}}{1 - x^2}?$$



CESCHIA ARTHUR

Note: 13.5/20	(score total	: 21/31)

+102/1/27+

0 0 0 0 0 0 0 0 0 1 1 1 Veillez à bien noircir les cases. 2 2 2 2 Codez votre numéro d'étudiant ci-contre ---3 3 3 3 3 et écrivez votre nom et prénom ci-dessous : 4 4 4 4 4 4 Nom et prénom : 5 Perchia Arthus 6 6 6 6 7 7 Attention à ne pas vous tromper, 8 toute erreur invalide la copie! 9 9 9 9

Fdm2 – Printemps 2019

Règlement – L'épreuve dure 90 minutes. Les calculatrices sont interdites. Les téléphones portables doivent être éteints. Il n'est admis de consulter aucun document. Les questions ont une seule bonne réponse, qui vaut 2 points. Cochez une seule réponse par question.

Soient $\mathcal{F}_1 = (u_1, u_2), \ \mathcal{F}_2 = (u_2, u_3, u_4), \ \mathcal{F}_3 = (u_1, u_2, u_3), \ \mathcal{F}_4 = (u_1, u_2, u_3, u_4)$ quatre familles de Question 1 vecteurs de \mathbb{R}^3 avec $u_1 = (1, -1, -1), u_2 = (2, 0, 1), u_3 = (-1, -1, 1), u_4 = (3, 1, 0).$

Alors

4/4

0/3

 \square aucune de ces familles n'est une base de \mathbb{R}^3 . \square \mathcal{F}_4 est une base de \mathbb{R}^3 . \square \mathcal{F}_2 est une base de \mathbb{R}^3 . $\int \mathcal{F}_1$ est une base de \mathbb{R}^3 . \mathcal{F}_3 est une base de \mathbb{R}^3 .

Soit $\beta = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 et $\beta' = (e_1', e_2', e_3')$ $P = \begin{pmatrix} -1 & 1 & 0 \\ 3 & -1 & -1 \\ 1 & 0 & -1 \end{pmatrix}$ la matrice de passage de β à β' . Soit u l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est :

$$A = \begin{pmatrix} -1 & -1 & -1 \\ 7 & 5 & -5 \\ 3 & 2 & -2 \end{pmatrix} \quad \text{Calculer } D = P^{-1}AP$$

$$D = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \boxed{ } D = \begin{pmatrix} -1 & 1 & 0 \\ 3 & -1 & -1 \\ 1 & 0 & -1 \end{pmatrix}$$

L'intégrale $\int_{-1}^{2} (2x-1)(x^2-x)^3 dx$, calculée avec le changement de variable $u=x^2-x$, Question 3 égale à

Quel est le développement limité à l'ordre 2 en 0 de la fonction f définie par Question 4

$$f(x) = \frac{\cos(x)}{1+x}?$$



	simples parmi les proposition suivantes :
3/3	$ \Box F = \frac{1}{X} + \frac{1}{X^2} - \frac{X+1}{X^2 + X+1} \qquad \Box F = \frac{1}{X} + \frac{1}{X^2} + \frac{X-1}{X^2 + X+1} \qquad \Box F = \frac{1}{X} + \frac{1}{X^2} + \frac{X}{X^2 + X+1} $ $F = \frac{1}{X} + \frac{1}{X^2} - \frac{X-1}{X^2 + X+1} \qquad \Box F = \frac{1}{X} + \frac{1}{X^2} + \frac{X}{X^2 + X+1} $
0/4	Question 6 Soit $f:[0,1] \to \mathbb{R}$ une fonction. Ci-dessous, seules deux affirmations sont nécessairement justes. Lesquelles? Si f est intégrable sur $[0,1]$, alors f est une fonction en escalier if f is f est en escalier sur f is f est en escalier sur f in f est pas continue sur f in f est pas intégrable sur f in f est pas intégrable sur f in f est continue sur f est continue sur f in f est continue sur
3/3	Question 7 Soient $u_1 = (-1, 1, 0), u_2 = (2, -1, 1), u_3 = (1, 0, 1), u_4 = (1, -1, 1)$ quatre vecteurs de \mathbb{R}^3 . Alors $(u_1, u_3, u_4) \text{ est une famille libre de } \mathbb{R}^3. \qquad \qquad (u_1, u_2, u_3, u_4) \text{ est une famille libre de } \mathbb{R}^3.$ Aucune de ces familles n'est libre. $\qquad \qquad (u_2, u_3, u_2 + u_3) \text{ est une famille libre de } \mathbb{R}^3.$ $\qquad \qquad (u_1, u_2, u_3) \text{ est une famille libre de } \mathbb{R}^3.$
	Question 8 Le produit de matrices $\begin{pmatrix} 2 & -2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 3 & 2 & 7 \\ 1 & 0 & -2 \end{pmatrix}$ vaut
	\bigcirc (5 10 16) \bigcirc (4 4 18) \bigcirc produit \bigcirc (6 1)
2.5/2.5	
2.5/2.5	Question 9 L'inverse de la matrice $\begin{pmatrix} 4 & 8 \\ 2 & 4 \end{pmatrix}$ est la matrice

 $u(x) = (x_1 + 2x_2, 2x_2 + x_3, x_1 - x_3)$

L'image de u est :

COSIALLS MAXIME Note: 9/20 (score total: 14/31)

\neg	TI				
-	+	_	-	_	=
	1 1				

+103/1/25+

Veillez à bien noircir les cases.		
Codez votre numéro d'étudiant ci-contre →	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
et écrivez votre nom et prénom ci-dessous : Nom et prénom :		117
COSIALL Maxime	5555555 _	
Attention à ne pas vous tromper, toute erreur invalide la copie!	777 7777	
toute erreur invalide la copie:		
Til o D	2-1	

Fdm2 – Printemps 2019

Règlement - L'épreuve dure 90 minutes. Les calculatrices sont interdites. Les téléphones portables doivent être éteints. Il n'est admis de consulter aucun document. Les questions ont une seule bonne réponse, qui vaut 2 points. Cochez une seule réponse par question.

Soient $\mathcal{F}_1 = (u_1, u_2), \ \mathcal{F}_2 = (u_2, u_3, u_4), \ \mathcal{F}_3 = (u_1, u_2, u_3), \ \mathcal{F}_4 = (u_1, u_2, u_3, u_4)$ quatre familles de vecteurs de \mathbb{R}^3 avec

 $u_1 = (1, -1, -1), u_2 = (2, 0, 1), u_3 = (-1, -1, 1), u_4 = (3, 1, 0).$

Alors

0/4

 \mathcal{F}_3 est une base de \mathbb{R}^3 .

aucune de ces familles n'est une base de \mathbb{R}^3 . \mathcal{F}_4 est une base de \mathbb{R}^3 . \mathcal{F}_2 est une base de \mathbb{R}^3 .

Soit $\beta = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 et $\beta' = (e_1', e_2', e_3')$ $P = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 0 & -2 \\ 1 & -1 & -2 \end{pmatrix}$ la matrice de Question 2

passage de β à β' . Soit u l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est

$$A = \begin{pmatrix} 3 & -4 & 2 \\ 2 & -1 & 0 \\ 1 & 1 & -1 \end{pmatrix} \quad \text{Calculer } D = P^{-1}AP$$

L'intégrale $\int_{1}^{2} \frac{5 + \ln x}{x} dx$, calculée avec le changement de variable $u = \ln x$, est égale à

Quel est le développement limité à l'ordre 2 en 0 de la fonction f définie par Question 4

$$f(x) = \frac{e^x}{1-x}?$$



Question 5	Soit F la fraction rationnelle définie par : $F = \frac{2X^3 + 2X^2 - 2X + 2}{(X^2 - 1)^2}$, déterminer sa décomposition en éléments
	les proposition suivantes :

0/4

3/3

$$F = \frac{1}{X-1} + \frac{1}{(X-1)^2} + \frac{1}{X+1} + \frac{1}{(X+1)^2}$$

$$F = \frac{1}{X-1} + \frac{2}{(X-1)^2} + \frac{1}{X+1} + \frac{2}{(X+1)^2}$$

$$F = \frac{1}{X-1} + \frac{1}{(X-1)^2} + \frac{1}{X+1} + \frac{1}{(X+1)^2}$$

$$F = \frac{1}{X-1} + \frac{2}{(X-1)^2} + \frac{1}{X+1} + \frac{2}{(X+1)^2}$$

$$F = \frac{1}{X-1} + \frac{1}{(X-1)^2} + \frac{1}{X+1} - \frac{1}{(X+1)^2}$$

$$F = -\frac{1}{X-1} + \frac{1}{(X-1)^2} - \frac{1}{X+1} + \frac{1}{(X+1)^2}$$

Question 6 Soit $f:[0,1] \to \mathbb{R}$ une fonction. Ci-dessous, seules deux affirmations sont nécessairement justes. Lesquelles? 7 Supred 187 ..

si f est continue sur [0, 1] alors il existe (f_n) , suite de fonctions en escaliers telle que $\int_0^1 f(x)dx = \lim_{n \to +\infty} \int_0^1 f_n(x)dx$ si f est continue sur [0, 1], alors f est intégrable sur [0, 1]

si f n'est pas continue sur [0,1] alors f n'est pas intégrable sur [0,1]si f est en escalier sur [0,1] alors il existe (f_n) , suite de fonctions continues telle que $\int_0^1 f(x)dx = \lim_{n \to +\infty} \int_0^1 f_n(x)dx$ si f est intégrable sur [0,1], alors f est une fonction en escalier Aucune de ces réponses n'est correcte.

Question 7 Soient

$$u_1 = (1, 1, 0), u_2 = (2, 2, 0), u_3 = (0, 1, 1), u_4 = (1, 1, 2)$$

quatre vecteurs de \mathbb{R}^3 . Alors

 (u_1, u_2, u_3, u_4) est une famille libre de \mathbb{R}^3 . (u_1, u_2, u_3) est une famille libre de \mathbb{R}^3 . Aucune de ces familles n'est libre. (u_1, u_2) est une famille libre de \mathbb{R}^3 . (u_1, u_3, u_4) est une famille libre de \mathbb{R}^3 .

Le produit de matrices $\begin{pmatrix} 2 & 1 & 3 \\ 0 & 2 & -1 \end{pmatrix} \begin{pmatrix} -3 & 2 \\ 1 & -1 \\ 3 & 1 \end{pmatrix}$ vaut Question 8

2.5/2.5

produit impossible

 $\Box \begin{pmatrix} -3 & 0 & 2 \\ -4 & 1 & -1 \end{pmatrix} \qquad \boxtimes \begin{pmatrix} 4 & 6 \\ -1 & -3 \end{pmatrix} \qquad \Box \begin{pmatrix} 2 & 2 & 3 \\ 4 & -3 & 0 \\ 0 & 9 & -1 \end{pmatrix}$

L'inverse de la matrice $\begin{pmatrix} 12 & 6 \\ 6 & 3 \end{pmatrix}$ est la matrice Question 9

l'inverse \square $\begin{pmatrix} 1 & -3 \\ -3 & 6 \end{pmatrix}$ \square $\begin{pmatrix} 3 & -6 \\ -6 & 12 \end{pmatrix}$

Soit $\mathcal{B}=(e_1,e_2,e_3)$ la base canonique de \mathbb{R}^3 . Soit $u:\mathbb{R}^3\to\mathbb{R}^3$ définie pour tout $(x_1,x_2,x_3)\in\mathbb{R}^3$ par Question 10

$$u(x) = (x_1 + 2x_2, 2x_2 + x_3, x_1 - x_3)$$

L'image de u est :

3/3
$$\bigvee \text{Vect}(e_1, e_2, e_3) \qquad \bigvee \text{Vect}(2e_1 + e_2 + 2e_3) \qquad \bigvee \text{Vect}(e_1 + e_3, e_2 + e_3)$$

$$\bigvee \text{Vect}(e_1 + e_3, e_1 + e_2) \qquad \bigvee \text{Vect}(e_1 + e_2, 2e_2 + e_3, e_1 - e_3)$$

DESRUES	TANGUY
Note: 9/20 ((score total: 14/31)

3/3

0/3



+109/1/13+

Veillez à bien noircir les cases.	
veniez a bien nonch les cases.	
Codez votre numéro d'étudiant ci-contre → et écrivez votre nom et prénom ci-dessous :	
Nom et prénom :	
DESRUES Tunguy	
Attention à ne pas vous tromper,	
toute erreur invalide la copie!	8 8 8 8 8 8 8
${ m Fdm2-Prin}$	ntemps 2019
Règlement – L'épreuve dure 90 minutes. Les calculatric éteints. Il n'est admis de consulter aucun document. Les c Cochez une seule réponse par question.	ces sont interdites. Les téléphones portables doivent être questions ont une seule bonne réponse, qui vaut 2 points.
Question 1 Soient $\mathcal{F}_1 = (u_1, u_2), \ \mathcal{F}_2 = (u_2, u_3, u_4), \ \mathcal{F}_3 = (u_4, u_4), \ \mathcal{F}_4 = (u_4, u_4), \ \mathcal{F}_5 = (u_4, u_4), \ \mathcal{F}_6 = (u_4, u_4), \ \mathcal{F}_7 = (u_4, u_4), \ \mathcal{F}_8 = (u_4, u_4),$	$\mathcal{F}_3 = (u_1, u_2, u_3), \ \mathcal{F}_4 = (u_1, u_2, u_3, u_4)$ quatre familles de
vecteurs de \mathbb{R}^3 avec $u_1 = (1, 1, 0), u_2 = (1, 0, 1), v_3 = (1, 0, 1), v_4 = (1, 0, 1), v_5 = (1, 0, 1), v_6 = (1, 0, 1), v_7 = (1, 0, 1), v_8 = (1, 0,$	$u_2 = (0, 1, 1), u_4 = (1, 1, 2),$
Alors	(-, -, -, -, -, -, -, -, -, -, -, -, -, -
	T
\mathcal{F}_1 est une base de \mathbb{R}^3 . aucune de ces familles n'est une base \mathcal{F}_2 est un	de \mathbb{R}^3 . \mathcal{F}_3 est une base de \mathbb{R}^3 . Le base de \mathbb{R}^3 .
Question 2 Soit $\beta=(e_1,e_2,e_3)$ la base canonique de \mathbb{R}^3	3 et $eta'=(e_1',e_2',e_3')$ $P=egin{pmatrix}1&1&1\\1&2&2\\1&2&3\end{pmatrix}$ la matrice de passage
de β à β' . Soit u l'endomorphisme de \mathbb{R}^3 dont la matrice de	ans la base canonique est :
$A = \begin{pmatrix} 3 & -2 & 0 \\ 4 & -3 & 0 \\ 4 & -2 & -1 \end{pmatrix} $ Calculer $D = P^{-1}AP$	8
$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \qquad \Box D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$	
Question 3 L'intégrale $\int_0^1 e^x (e^x + 3)^5 dx$, calculée	avec le changement de variable $u=e^x+3$, est égale à
Question 4 Quel est le développement limité à l'ordre	2 en 0 de la fonction f définie par
24 A 200 A 2	8000
$f(x) = \frac{c}{c}$	1 1 7

 $1 - x + \frac{x^2}{2} + o(x^2). \qquad \qquad x - \frac{x^2}{2} + o(x^2). \qquad \qquad 2 - x + \frac{x^2}{2} + o(x^2).$

Question 5	Soit F la fraction rationnelle définie par	F =	$\frac{2X^3+2X^2-2X+2}{(X^2-1)^2}$, déterminer sa décomposition en élément
simples parmi	les proposition suivantes :			

0/4

0/3

$$F = \frac{1}{X-1} + \frac{1}{(X-1)^2} + \frac{1}{X+1} + \frac{1}{(X+1)^2}$$

$$F = \frac{1}{X-1} + \frac{2}{(X-1)^2} + \frac{1}{X+1} + \frac{2}{(X+1)^2}$$

$F = -\frac{1}{2}$	_ 1	1	_ 1
$F = -\frac{1}{X-1} - \frac{1}{X-1}$	$(X-1)^2$	X+1	$(X+1)^2$
$F = \frac{1}{X-1} -$	72 112 +	- 1 -	1 / 1/12
X-1	(Y-1).	X +1	(X+1)*

Question 6 Soit $f:[0,1] \to \mathbb{R}$ une fonction. Ci-dessous, seules deux affirmations sont nécessairement justes. Lesquelles?

si f est intégrable sur [0,1], alors f est une fonction en escalier

si f est continue sur [0,1] alors il existe (f_n) , suite de fonctions en escaliers telle que $\int_0^1 f(x)dx = \lim_{n \to +\infty} \int_0^1 f_n(x)dx$ si f est continue sur]0,1], alors f est intégrable sur [0,1]

si f est en escalier sur [0, 1] alors il existe (f_n) , suite de fonctions continues telle que $\int_0^1 f(x)dx = \lim_{n \to +\infty} \int_0^1 f_n(x)dx$ si f n'est pas continue sur [0, 1] alors f n'est pas intégrable sur [0, 1]

Aucune de ces réponses n'est correcte.

Question 7 Soient

$$u_1 = (-1, 0, 2), u_2 = (1, 1, -2), u_3 = (0, 1, 0), u_4 = (1, 2, -2)$$

quatre vecteurs de R³. Alors

 (u_1, u_2, u_3) est une famille libre de \mathbb{R}^3 . $(u_1 + u_2, u_2, u_3)$ est une famille libre de \mathbb{R}^3 . (u_1, u_2, u_3, u_4) est une famille libre de \mathbb{R}^3 . Aucune de ces familles n'est libre.

 (u_2, u_3, u_4) est une famille libre de \mathbb{R}^3 .

Question 8 Le produit de matrices $\begin{pmatrix} 1 & 2 \\ -1 & 5 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 2 & 0 \\ 1 & 5 \end{pmatrix}$ vaut

2.5/2.5

$$\square \begin{pmatrix} 5 & 2 \\ 2 & -2 \\ 11 & 26 \end{pmatrix}$$

 $\square \begin{pmatrix} 5 & 2 \\ 2 & -2 \\ 11 & 26 \end{pmatrix} \qquad \bowtie \qquad \text{produit} \qquad \square \begin{pmatrix} 2 & 11 \\ 2 & 4 \\ -4 & 27 \end{pmatrix} \qquad \square \begin{pmatrix} 5 & 2 & 11 \\ 2 & -2 & 26 \end{pmatrix}$

L'inverse de la matrice $\begin{pmatrix} 1 & 0 \\ 7 & 1 \end{pmatrix}$ est la matrice Question 9

2.5/2.5

$$(\begin{bmatrix} 1 \\ - \end{bmatrix}$$

Soit $\mathcal{B} = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 . Soit $u : \mathbb{R}^3 \to \mathbb{R}^3$ définie pour tout $(x_1, x_2, x_3) \in \mathbb{R}^3$ par Question 10

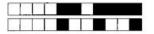
$$u(x) = (x_1 - x_2, x_2 - x_3, x_1 - x_3)$$

L'image de u est :

3/3
$$\bigvee \text{Vect}(e_1, e_2, e_3)$$
 $\bigvee \text{Vect}(e_1 - e_2, e_2 - e_3, e_1 - e_3)$ $\bigvee \text{Vect}(e_1 + e_2 + e_3, -e_1 + e_2)$ $\bigvee \text{Vect}(e_1, e_2, e_1 + e_3)$ $\bigvee \text{Vect}(e_1 + e_3, e_2 + e_3)$

DREVETON NATHAN

Note: 15.5/20 ((score total	: 24.5/31)



+111/1/9+

Veillez à bien noircir les cases.

Codez votre numéro d'étudiant ci-contre et écrivez votre nom et prénom ci-dessous :

Nom et prénom :

Attention à ne pas vous tromper, toute erreur invalide la copie!

			0		\square_0	0		
1	2 1	$\Box 1$				\Box 1		
\square_2	\square_2	\square_2	_2	\square_2	\square_2	\square_2		
$\square 3$				8		$\square 3$		j
\Box 4	$\Box 4$	$\Box 4$	$\Box 4$	$\Box 4$	<u></u> 4	$\Box 4$		
5		5		<u></u> 5		<u></u>		,
\Box_{c}		T16		Te			\Box	

[6 | 6 | 6 | 6 | 6 | 6 | 6 |

8 □8 **□**8 **□** 9 9 9 9 9 9 9

Fdm2 - Printemps 2019

Règlement - L'épreuve dure 90 minutes. Les calculatrices sont interdites. Les téléphones portables doivent être éteints. Il n'est admis de consulter aucun document. Les questions ont une seule bonne réponse, qui vaut 2 points. Cochez une seule réponse par question.

Soient $\mathcal{F}_1 = (u_1, u_2), \ \mathcal{F}_2 = (u_2, u_3, u_4), \ \mathcal{F}_3 = (u_1, u_2, u_3), \ \mathcal{F}_4 = (u_1, u_2, u_3, u_4)$ quatre familles de Question 1 vecteurs de \mathbb{R}^3 avec

$$u_1 = (1,0,2), u_2 = (1,-1,-1), u_3 = (2,-1,1), u_4 = (3,-2,0).$$

Alors

4/4

3/3

 \mathcal{F}_3 est une base de \mathbb{R}^3 . \square \mathcal{F}_1 est une base de \mathbb{R}^3 . \square \mathcal{F}_4 est une base de \mathbb{R}^3 . \square \mathcal{F}_2 est une base de \mathbb{R}^3 .

Soit $\beta = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 et $\beta' = (e_1', e_2', e_3')$ $P = \begin{pmatrix} -1 & 1 & 0 \\ 3 & -1 & -1 \\ 1 & 0 & -1 \end{pmatrix}$ la matrice de Question 2

passage de β à β' . Soit u l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est $A = \begin{pmatrix} -1 & -1 & -1 \\ 7 & 5 & -5 \\ 3 & 2 & -2 \end{pmatrix}$. Calculer $D = P^{-1}AP$

$$A = \begin{pmatrix} -1 & -1 & -1 \\ 7 & 5 & -5 \\ 3 & 2 & -2 \end{pmatrix}$$
Calculer $D = P^{-1}AF$

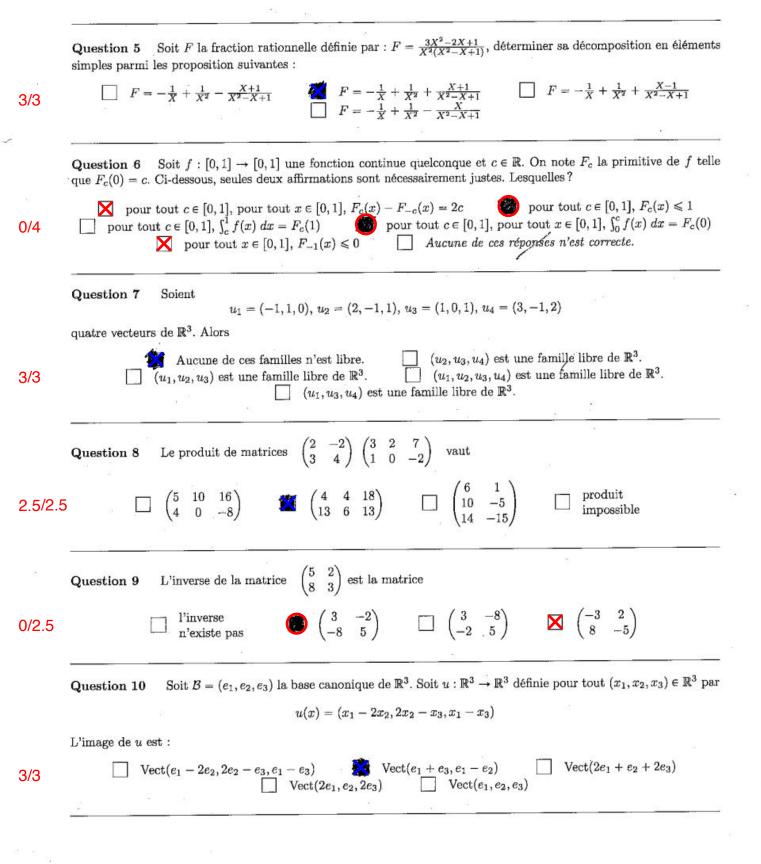
3/3

L'intégrale $\int_0^1 \frac{e^x}{e^x + 3} dx$, calculée avec le changement de variable $u = e^x$, est égale à Question 3

 $\Box \int_{0}^{e} \frac{u}{u+3} du \qquad \Box \int_{0}^{1} \frac{u}{u+3} du \qquad \Box \int_{0}^{1} \frac{1}{u+3} du$

Question 4 Quel est le développement limité à l'ordre 2 en 0 de la fonction f définie par

$$f(x) = \frac{\sin x}{1+x}?$$



JOLY ANDREA

4/4

3/3

3/3

3/3

Note: 13.5/20 (score total: 21/31)

+106/1/19+

Veillez à bien noircir les cases. 1 1 $1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1$ Codez votre numéro d'étudiant ci-contre → 3 3 3 3 3 et écrivez votre nom et prénom ci-dessous : Nom et prénom : 5 5 5 5 5 JOLY Andrés 6 6 6 6 6 7 Attention à ne pas vous tromper, 8 8 8 8 8 toute erreur invalide la copie! 9 9 9 9 9 Fdm2 – Printemps 2019 Règlement - L'épreuve dure 90 minutes. Les calculatrices sont interdites. Les téléphones portables doivent être éteints. Il n'est admis de consulter aucun document. Les questions ont une seule bonne réponse, qui vaut 2 points. Cochez une seule réponse par question. Question 1 Soient $\mathcal{F}_1 = (u_1, u_2), \ \mathcal{F}_2 = (u_2, u_3, u_4), \ \mathcal{F}_3 = (u_1, u_2, u_3), \ \mathcal{F}_4 = (u_1, u_2, u_3, u_4)$ quatre familles de vecteurs de \mathbb{R}^3 avec $u_1 = (-1, 1, 0), u_2 = (2, -1, 1), u_3 = (1, 0, 1), u_4 = (1, -1, -1).$ Alors \mathcal{F}_1 est une base de \mathbb{R}^3 . \square \mathcal{F}_3 est une base de \mathbb{R}^3 . \square \mathcal{F}_4 est une base de \mathbb{R}^3 . \square aucune de ces familles n'est une base de \mathbb{R}^3 . Question 2 Soit $\beta = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 et $\beta' = (e'_1, e'_2, e'_3)$ $P = \begin{pmatrix} 6 & -2 & 3 \\ -2 & 1 & -1 \\ 1 & 0 & 1 \end{pmatrix}$ la matrice de passage de β à β' . Soit u l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est passage do p = 1 $A = \begin{pmatrix} 3 & 12 & 6 \\ -1 & -4 & -2 \\ 0 & 1 & 2 \end{pmatrix}$. Calculer $D = P^{-1}AP$ L'intégrale $\int_0^1 \frac{e^x}{2\sqrt{e^x+1}} dx$, calculée avec le changement de variable $u=e^x$, est égale à Question 3 Quel est le développement limité à l'ordre 2 en 0 de la fonction f définie par

Question 4

$$f(x) = \ln(1-x)e^x?$$

$$-x - \frac{3x^2}{2} + o(x^2). \qquad \boxed{1 + \frac{x}{2} + \frac{x^2}{4} + o(x^2)}. \qquad \boxed{-1 + \frac{x}{3} + \frac{x^2}{6} + o(x^2)}.$$

$$\boxed{2 - x + x^2 + o(x^2)}. \qquad \boxed{x + o(x^2)}.$$

Question 5	Soit	F la	a fraction	rationnelle	définie	par:	F =	$\frac{-2X^3+2X^2+2X+2}{(X^2-1)^2}$	déterminer sa	décomposition	er
éléments simple							*0				

Soit $f:[0,1] \to [0,1]$ une fonction intégrable quelconque. Ci-dessous, seules deux affirmations sont nécessairement justes. Lesquelles?

0/4

(E)	$\int_0^1 f^2(x)$	$dx \leqslant \frac{1}{2}$		$\int_0^1 f^2(x) \ dx$	$\leq 1 - \int_0^1 f$	$^{c3}(x) dx$		$\int_0^1 f^2(x) \ dx =$	$\leq \int_0^1 f(x) dx$
	X	$\int_0^1 f^2(x)$	$dx \leqslant \int_0^1 (1$	-f(x)) dx		$\int_0^1 (1 - f)^2$		$1 - \int_0^1 f(x) dx$	
				Aucune de	ces répons	es n'est c	correcte.	1 35383550 8	

Question 7 Soient

$$u_1 = (1, -2, 1), u_2 = (1, 1, 1), u_3 = (1, 0, 0), u_4 = (2, -4, 2)$$

quatre vecteurs de R³. Alors

 (u_1, u_2, u_3, u_4) est une famille libre de \mathbb{R}^3 . (u_1, u_3, u_4) est une famille libre de \mathbb{R}^3 .

 (u_2, u_3, u_4) est une famille libre de \mathbb{R}^3 . (u_1, u_2, u_3) est une famille libre de \mathbb{R}^3 .

Aucune de ces familles n'est libre.

Le produit de matrices $\begin{pmatrix} 1 & 2 \\ -1 & 5 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 2 & 0 \\ 1 & 5 \end{pmatrix}$ vaut

2.5/2.5

0/3

L'inverse de la matrice $\begin{pmatrix} 4 & 8 \\ 2 & 4 \end{pmatrix}$ est la matrice Question 9

2.5/2.5

l'inverse
$$\square$$
 $\begin{pmatrix} 4 & -8 \\ -2 & 4 \end{pmatrix}$ \square $\begin{pmatrix} -4 & 2 \\ 8 & -4 \end{pmatrix}$

Soit $\mathcal{B} = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 . Soit $u : \mathbb{R}^3 \to \mathbb{R}^3$ définie pour tout $(x_1, x_2, x_3) \in \mathbb{R}^3$ par Question 10

$$u(x) = (x_1 + 2x_2, 2x_2 + x_3, x_1 - x_3)$$

L'image de u est :

KNAGGS FREYA

+110/1/11+

Veillez à bien noircir les cases. 1 1 1 1 1 2 2 2 2 2 2 2 Codez votre numéro d'étudiant ci-contre → 3 3 3 3 3 et écrivez votre nom et prénom ci-dessous : Nom et prénom : 5 5 5 5 5 5 5 KNAGGS freya 6 6 6 6 6 7 7 7 7 7 7 Attention à ne pas vous tromper, toute erreur invalide la copie! 8 8 8 9 9 9 9 9 9 9 9 9

Fdm2 - Printemps 2019

Règlement — L'épreuve dure 90 minutes. Les calculatrices sont interdites. Les téléphones portables doivent être éteints. Il n'est admis de consulter aucun document. Les questions ont une seule bonne réponse, qui vaut 2 points. Cochez une seule réponse par question.

Question 1 Soient $\mathcal{F}_1 = (u_1, u_2)$, $\mathcal{F}_2 = (u_2, u_3, u_4)$, $\mathcal{F}_3 = (u_1, u_2, u_3)$, $\mathcal{F}_4 = (u_1, u_2, u_3, u_4)$ quatre familles de vecteurs de \mathbb{R}^3 avec

 $u_1 = (1, -1, 0), u_2 = (-1, 0, 1), u_3 = (0, -1, 1), u_4 = (-1, 1, 0).$

Alors

0/4

 \mathcal{F}_2 est une base de \mathbb{R}^3 . \square \mathcal{F}_3 est une base de \mathbb{R}^3 . \square \mathcal{F}_1 est une base de \mathbb{R}^3 .

Question 2 Soit $\beta = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 et $\beta' = (e_1', e_2', e_3')$ $P = \begin{pmatrix} 2 & -3 & 2 \\ 1 & -2 & 1 \\ 0 & -1 & 1 \end{pmatrix}$ la matrice de passage de β à β' . Soit u l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est :

 $A = \begin{pmatrix} 3 & -8 & 4 \\ 2 & -5 & 2 \\ 2 & -4 & 1 \end{pmatrix}$ Calculer $D = P^{-1}AP$

Question 3 L'intégrale $\int_1^2 (2x-1)(x^2-x)^3 dx$, calculée avec le changement de variable $u=x^2-x$, est égale à

Question 4 Quel est le développement limité à l'ordre 2 en 0 de la fonction f définie par

$$f(x) = e^x \sqrt{1 + x^2}?$$

3x3-3x2+3x-1

Question 5 Soit F la fraction rationnelle définie par : $F = \frac{3X^3 - 2X^2 + 3X}{(X-1)^2(X^2+1)}$, déterminer sa décomposition en éléments simples parmi les proposition suivantes :

3/3

$$F = \frac{2}{X-1} - \frac{1}{(X-1)^2} + \frac{X}{X^2+1}$$

$$F = \frac{2}{X-1} + \frac{1}{(X-1)^2} + \frac{X-1}{X^2+1}$$

$$F = \frac{2}{X-1} + \frac{1}{(X-1)^2} + \frac{X}{X^2+1}$$

$$F = \frac{2}{X-1} + \frac{1}{(X-1)^2} + \frac{X-1}{X^2+1}$$

$$F = \frac{2}{X-1} + \frac{1}{(X-1)^2} + \frac{X}{X^2+1}$$

$$F = \frac{2}{X-1} + \frac{1}{(X-1)^2} + \frac{X}{X^2+1}$$

Soit $f:[0,1] \to [0,1]$ une fonction continue quelconque et $c \in \mathbb{R}$. On note F_c la primitive de f telle Question 6 que $F_c(0) = c$. Ci-dessous, seules deux affirmations sont nécessairement justes. Lesquelles?

0/4

pour tout $c \in [0,1]$, pour tout $x \in [0,1]$, $F_c(x) - F_{-c}(x) = 2c$	pour tout $x \in [0,1], F_{-1}(x) \leq 0$
pour tout $c \in [0,1]$, $\int_c^1 f(x) dx = F_c(1)$	pour tout $c \in [0,1], F_c(x) \leq 1$
pour tout $c \in [0,1]$, pour tout $x \in [0,1]$, $\int_0^c f(x) dx = F_c(0)$	Aucune de ces réponses n'est correcte.

Question 7

Soient

$$u_1 = (-1, 0, 1), u_2 = (2, 0, 3), u_3 = (1, 0, 2), u_4 = (3, 0, 5)$$

quatre vecteurs de R3. Alors

0/3

	X.	Aucune de ces familles n'est libre.		(u_2, u_3, u_4) est une famille libre de \mathbb{R}^3 .
翻	$(u_1,,,,,,,, .$	Aucune de ces familles n'est libre. u_2, u_3, u_4) est une famille libre de \mathbb{R}^3 .		(u_1, u_3, u_4) est une famille libre de \mathbb{R}^3
	100	u_1, u_2, u_3) est	une fa	mille libre de \mathbb{R}^3 .

Question 8 Le produit de matrices $\begin{pmatrix} 7 & -1 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ vaut

2.5/2.5

Question 9 L'inverse de la matrice $\begin{pmatrix} 7 & 3 \\ 4 & 2 \end{pmatrix}$ est la matrice

2.5/2.5

$$\square \quad \begin{pmatrix} 7/2 & -3/2 \\ -2 & 1 \end{pmatrix}$$

$$\square \quad \begin{pmatrix} 7/2 & -3/2 \\ -2 & 1 \end{pmatrix} \qquad \square \quad \begin{pmatrix} 1 & -2 \\ -3/2 & 7/2 \end{pmatrix} \qquad \square \quad \begin{array}{c} \text{l'inverse} \\ \text{n'existe pas} \end{array}$$

$$\begin{pmatrix} 1 & -3/2 \\ -2 & 7/2 \end{pmatrix}$$

Soit $\mathcal{B}=(e_1,e_2,e_3)$ la base canonique de \mathbb{R}^3 . Soit $u:\mathbb{R}^3\to\mathbb{R}^3$ définie pour tout $(x_1,x_2,x_3)\in\mathbb{R}^3$ par Question 10 $u(x) = (2x_1 + x_2, x_2 + 2x_3, x_1 - x_3)$

L'image de u est :



MADET ALICIA

Note: 11.5/20 (score total: 18.5/31)

+107/1/17+

1 1 1 1 1 1 1 1 Veillez à bien noircir les cases. $2 \bigcirc 2 \bigcirc 2$ 2 2 2 Codez votre numéro d'étudiant ci-contre → 3 3 3 3 3 3 et écrivez votre nom et prénom ci-dessous : 4 4 4 4 4 4 4 Nom et prénom : 5 5 5 5 5 5 5 MADET Alua 6 6 6 6 6 6 6 7 7 7 Attention à ne pas vous tromper, 8 8 8 8 toute erreur invalide la copie! 9 9 9 7 9 9 9 Fdm2 – Printemps 2019

Règlement - L'épreuve dure 90 minutes. Les calculatrices sont interdites. Les téléphones portables doivent être éteints. Il n'est admis de consulter aucun document. Les questions ont une seule bonne réponse, qui vaut 2 points. Cochez une seule réponse par question.

Soient $\mathcal{F}_1 = (u_1, u_2), \ \mathcal{F}_2 = (u_2, u_3, u_4), \ \mathcal{F}_3 = (u_1, u_2, u_3), \ \mathcal{F}_4 = (u_1, u_2, u_3, u_4)$ quatre familles de Question 1 vecteurs de \mathbb{R}^3 avec

 $u_1 = (2, 1, -1), u_2 = (1, 1, 1), u_3 = (1, 0, 1), u_4 = (2, 1, 2).$

Alors

0/4

3/3

 \mathcal{F}_2 est une base de \mathbb{R}^3 . \square \mathcal{F}_1 est une base de \mathbb{R}^3 . \square \mathcal{F}_3 est une base de \mathbb{R}^3 . \square \mathcal{F}_4 est une base de \mathbb{R}^3 .

Soit $\beta = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 et $\beta' = (e_1', e_2', e_3')$ $P = \begin{pmatrix} 2 & -3 & 2 \\ 1 & -2 & 1 \\ 0 & -1 & 1 \end{pmatrix}$ la matrice de

passage de β à β' . Soit u l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est :

$$A = \begin{pmatrix} 3 & -8 & 4 \\ 2 & -5 & 2 \\ 2 & -4 & 1 \end{pmatrix}$$
 Calculer $D = P^{-1}AP$

 $D = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \qquad D = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \qquad D = \begin{pmatrix} 2 & -3 & 2 \\ 1 & -2 & 1 \\ 0 & -1 & 1 \end{pmatrix} \qquad D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ 0/3

L'intégrale $\int_1^e \frac{1}{x(\ln x)^2} dx$, calculée avec le changement de variable $u = \ln x$, est égale à Question 3

Quel est le développement limité à l'ordre 2 en 0 de la fonction f définie par Question 4

$$f(x) = \ln(1+x)\sin x?$$

 $1-x+2x^2+o(x^2).$ $1 - x + o(x^2)$. 3/3

Question 5	Soit F la fraction rationnelle définie par : $F = \frac{-2X^3 + 2X^2 + 2X^2}{(X^2 - 1)^2}$	(+2, déterminer sa décomposition et
	oles parmi les proposition suivantes :	

$F = -\frac{1}{X+1} + \frac{1}{(X+1)^2} - \frac{1}{X-1} + \frac{1}{(X-1)^2}$	$ F = \frac{1}{X+1} + \frac{1}{(X-1)^2} + \frac{1}{X-1} + \frac{1}{(X-1)^2} $
$F = -\frac{1}{X+1} + \frac{2}{(X+1)^2} - \frac{1}{X-1} + \frac{2}{(X-1)^2}$	$ F = -\frac{1}{X+1} - \frac{1}{(X+1)^2} - \frac{1}{X-1} - \frac{1}{(X+1)^2} $

Question 6 Soit $f: [-1,1] \to \mathbb{R}$ une fonction continue. Ci-dessous, seules deux affirmations sont nécessairement justes. Lesquelles?

4/4

3/3

$\inf_{x \in [-1,1]} f(x) \le \int_0^1 f(x) dx \le \sup_{x \in [-1,1]} f(x)$	
il existe $c \in [0, 1]$ tel que $\int_{-1}^{1} f(x) dx = 2f(c)$	il existe $c \in [-1, 1]$ tel que $\int_0^1 f(x) dx = 2f(c)$
il existe $c \in [-1, 1]$ tel que $\int_{-1}^{1} f(x) dx = 2f(c)$	

Question 7 Soient

$$u_1 = (-1, 1, 0), u_2 = (2, -1, 1), u_3 = (1, 0, 1), u_4 = (1, -1, 1)$$

quatre vecteurs de \mathbb{R}^3 . Alors

	Aucune de ces familles n'est libre
(u_1, u_2, u_3) est une famille libre de \mathbb{R}^3 .	(u_1, u_3, u_4) est une famille libre de \mathbb{R}^3 .
u_1, u_2, u_3, u_4 est une far	nille libre de \mathbb{R}^3 .

Question 8 Le produit de matrices $\begin{pmatrix} 2 & -3 & 4 \\ 0 & 1 & 3 \end{pmatrix} \begin{pmatrix} 7 \\ 2 \\ -1 \end{pmatrix}$ vaut

2.5/2.5

Question 9 . L'inverse de la matrice $\begin{pmatrix} 5 & 3 \\ 3 & 2 \end{pmatrix}$ est la matrice

0/2.5

$$\boxtimes$$
 $\begin{pmatrix}
2 & -3 \\
-3 & 5
\end{pmatrix}$ \square $\begin{pmatrix}
-5 & 3 \\
3 & -2
\end{pmatrix}$ \square $\begin{pmatrix}
-2 & -3 \\
-3 & -5
\end{pmatrix}$

Soit $\mathcal{B} = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 . Soit $u : \mathbb{R}^3 \to \mathbb{R}^3$ définie pour tout $(x_1, x_2, x_3) \in \mathbb{R}^3$ par Question 10

$$u(x) = (x_1 + 2x_2, 2x_2 + x_3, x_1 - x_3)$$

L'image de u est :

0/3

3/3

0/3

+114/1/3+

To To To 🜃o To To T 1 1 [1 Veillez à bien noircir les cases. 2 2 2 2 Codez votre numéro d'étudiant ci-contre — 3 3 3 3 3 et écrivez votre nom et prénom ci-dessous : 4 4 4 4 4 4 Nom et prénom : 5 5 5 MECHRAOUL 6 6 6 7 Attention à ne pas vous tromper, 8 8 toute erreur invalide la copie! $9 \square 9 \square$ 9 3 9 9 Fdm2 – Printemps 2019 Règlement - L'épreuve dure 90 minutes. Les calculatrices sont interdites. Les téléphones portables doivent être éteints. Il n'est admis de consulter aucun document. Les questions ont une seule bonne réponse, qui vaut 2 points. Cochez une seule réponse par question. Soient $\mathcal{F}_1 = (u_1, u_2), \ \mathcal{F}_2 = (u_2, u_3, u_4), \ \mathcal{F}_3 = (u_1, u_2, u_3), \ \mathcal{F}_4 = (u_1, u_2, u_3, u_4)$ quatre familles de vecteurs de \mathbb{R}^3 avec $u_1 = (-1, 1, 0), u_2 = (2, -1, 1), u_3 = (1, 0, 1), u_4 = (1, -1, -1).$ Alors aucune de ces familles n'est une base de \mathbb{R}^3 . \mathcal{F}_4 est une base de \mathbb{R}^3 . \mathcal{F}_5 est une base de \mathbb{R}^3 . \mathcal{F}_6 est une base de \mathbb{R}^3 . Soit $\beta = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 et $\beta' = (e'_1, e'_2, e'_3)$ $P = \begin{pmatrix} 2 & -3 & 2 \\ 1 & -2 & 1 \\ 0 & -1 & 1 \end{pmatrix}$ la matrice de passage de β à β' . Soit u l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est $A = \begin{pmatrix} 3 & -8 & 4 \\ 2 & -5 & 2 \end{pmatrix}$. Calculer $D = P^{-1}AP$ $A = \begin{pmatrix} 3 & -8 & 4 \\ 2 & -5 & 2 \\ 2 & -4 & 1 \end{pmatrix} \quad \text{Calculer } D = P^{-1}AP$ L'intégrale $\int_0^{\pi/2} (\cos x + \cos^2 x) \sin x \, dx$, calculée avec le changement de variable $u = \cos x$, est égale à

Question 4 Quel est le développement limité à l'ordre 2 en 0 de la fonction f définie par

$$f(x) = \frac{e^x}{1-x}?$$

Question 5	Soit F la fraction	rationnelle défini	e par : F =	$\frac{-2X^3+2X^2+2X+2}{(X^2-1)^2}$	déterminer sa	décomposition	eı
éléments simple	es parmi les proposi	tion suivantes:		V / /			

					170
	. F _	1	1	1	1
ш	F = -	$\overline{X+1}$	$(X+1)^2$	$\overline{X-1}$	$(X-1)^2$
	F = -	1	1	_1	_1_
	$F = -\frac{1}{\lambda}$	+1	$(X+1)^2$	X-1	$(X-1)^2$

$F = \frac{1}{X+1} +$	$-\frac{1}{(X-1)^2}$ +	$-\frac{1}{X-1} +$	$\frac{1}{(X-1)^2}$
$F = -\frac{1}{X+1} \cdot$	$+\frac{2}{(X+1)^2}$	$-\frac{1}{X-1}$	$+\frac{2}{(X-1)^2}$

Question 6 Soit $f:[0,1] \to [0,1]$ une fonction continue quelconque et $c \in \mathbb{R}$. On note F_c la primitive de f telle que $F_c(0) = c$. Ci-dessous, seules deux affirmations sont nécessairement justes. Lesquelles?

0/4

3/3

X	pour tout $x \in [0, 1], F_{-1}(x) \le 0$
] pour tout $c \in [0, 1], F_c(x) \leq 1$

pour tout $c \in [0, 1]$, pour tout $x \in [0, 1]$, $F_c(x) - F_{-c}(x) = 2c$ pour tout $c \in [0, 1]$, pour tout $x \in [0, 1]$, $\int_0^c f(x) dx = F_c(0)$

pour tout $c \in [0,1]$, $\int_c^1 f(x) dx = F_c(1)$

Aucune de ces réponses n'est correcte.

Question 7 Soient

$$u_1 = (1,0,1), u_2 = (1,1,1), u_3 = (2,1,2), u_4 = (0,1,0)$$

quatre vecteurs de \mathbb{R}^3 . Alors

(u_1, u_2, u_3, u_4) est une famille libre de \mathbb{R}^{3X} .	Aucune de ces familles n'est libre.
(u_1, u_2, u_3) est une famille libre de \mathbb{R}^3 .	(u_2, u_3, u_4) est une famille libre de \mathbb{R}^3
u_1, u_3, u_4) est une	famille libre de \mathbb{R}^3 .

Question 8 Le produit de matrices $\begin{pmatrix} -1\\0\\2 \end{pmatrix}$ (5 3 1) vaut

2.5/2.5

$$\begin{pmatrix} -5 & -3 & -1 \\ 0 & 0 & 0 \\ 10 & 6 & 2 \end{pmatrix}$$

L'inverse de la matrice $\begin{pmatrix} 1 & 0 \\ 7 & 1 \end{pmatrix}$ est la matrice Question 9

2.5/2.5

$$\begin{bmatrix} 1 & -7 \\ 0 & 1 \end{bmatrix}$$

Soit $\mathcal{B}=(e_1,e_2,e_3)$ la base canonique de \mathbb{R}^3 . Soit $u:\mathbb{R}^3\to\mathbb{R}^3$ définie pour tout $(x_1,x_2,x_3)\in\mathbb{R}^3$ par Question 10

$$u(x) = (x_1 + 2x_2, 2x_2 + x_3, x_1 - x_3)$$

L'image de u est :

OUAR BADREDDINE Note: 13.5/20 (score total : 21/31)

4/4

3/3

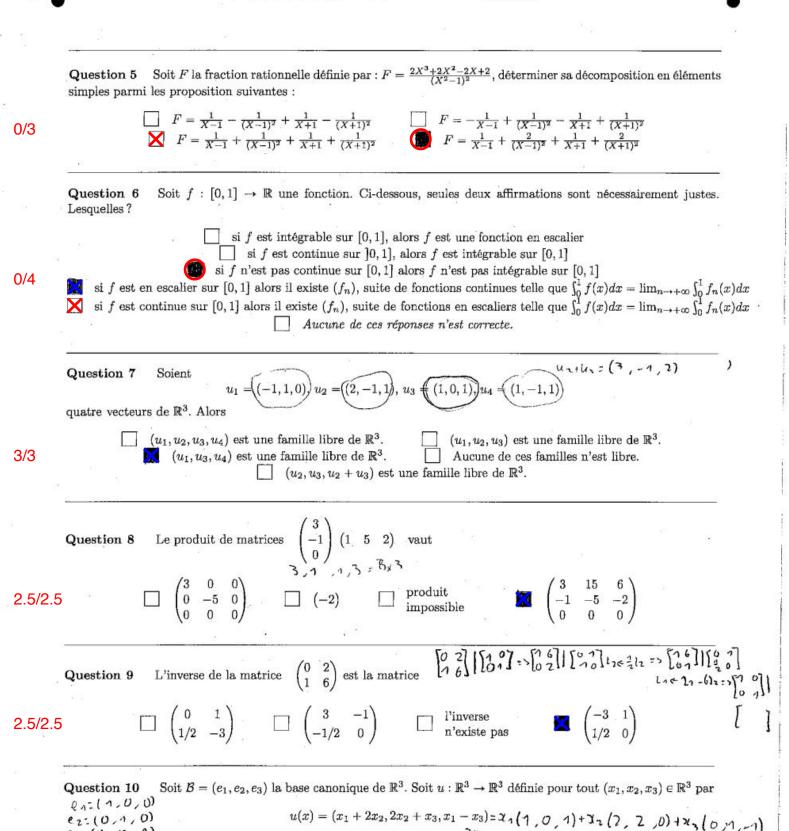
0/3

3/3

=

+100/1/31+

Veillez à bien noircir les cases. Codez votre numéro d'étudiant ci-contre — et écrivez votre nom et prénom ci-dessous : Nom et prénom : Ouan Badreddine. Attention à ne pas vous tromper, toute erreur invalide la copie!	
Fdm2 – Print	temps 2019
Règlement — L'épreuve dure 90 minutes. Les calculatrice steints. Il n'est admis de consulter aucun document. Les que l'ochez une seule réponse par question. Question 1 Soient $\mathcal{F}_1 = (u_1, u_2), \ \mathcal{F}_2 = (u_2, u_3, u_4), \ \mathcal{F}_3$ recteurs de \mathbb{R}^3 avec $u_1 = (1, -1, -1), \ u_2 = (2, 0, 1), \ u_3$ Alors $ \qquad $	points ont une seule bonne réponse, qui vaut 2 points. $a_3=(u_1,u_2,u_3), \ \mathcal{F}_4=(u_1,u_2,u_3,u_4)$ quatre familles de $a_3=(-1,-1,1), \ u_4=(3,1,0)$. base de \mathbb{R}^3 .
Question 2 Soit $\beta = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 cassage de β à β' . Soit u l'endomorphisme de \mathbb{R}^3 dont la matrix $A = \begin{pmatrix} -5 & 2 & -4 \\ -6 & 4 & -3 \\ 8 & -2 & 7 \end{pmatrix}$. Calculer $D = P^{-1}AP \begin{bmatrix} 6 & 7 & 5 \\ -7 & 7 & -4 \\ 1 & 0 & 7 \end{bmatrix} \begin{bmatrix} -5 \\ -6 & 6 \end{bmatrix}$ $D = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$ $D = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Question 3 L'intégrale $\int_1^3 \frac{1}{x\sqrt{x+1}} dx$, calculée avec	
	en 0 de la fonction f définie par $\frac{\ln x}{1+x}? = \frac{1}{1+x} \left[\frac{1}{1+x} + \frac{1}{1+x} + \frac{1}{1+x} + \frac{1}{1+x} \right]$
$-1-2x-3x^2+o(x^2)$. $x+x^2+o(x^2)$.	



 $u(x) = (x_1 + 2x_2, 2x_2 + x_3, x_1 - x_3) = \chi_1(1, 0, 1) + \chi_2(7, 2, 0) + \chi_3(0, 1, -1)$ $2\chi_4 \in Vect((1, 0, 1), (1, 1, 0), (0, 1, -1))$ $2\chi_4 \in Vect((1, 0, 1), (1, 1, 0), (0, 1, -1))$ $Vect(e_1 + e_3, e_2 - e_3) \qquad Vect(e_1, e_2, e_3) \qquad Vect(2e_1 - e_2 + 2e_3) = Vect((1, 0, 1), (1, 1, 0), (1, 1, 1, 0))$ $Vect(e_1 + 2e_2, 2e_2 + e_3, e_1 + e_3) \qquad Vect(2e_1 + e_2 + 2e_3)$ $Vect(2e_1 + e_2 + 2e_3)$

 $\frac{1}{(x-1)^2} + \frac{1}{x+1} = \frac{1}{(x+1)^2} = \frac{(x-1)^2(x+1)^2(x+1) - (x-1)(x+1)^2(x+1)^2 + (x-1)(x-1)^2(x+1)^2 + (x+1)(x+1)^2}{(x^2-2x+1)(x^2+2x+1)(x+1) - (x-1)(x+1)(x^2+2x+1) + (x-1)(x^2-2x+1)(x^2+2x+1) - (x-1)(x+1)(x^2-2x+1)}{(x^2-2x+1)(x^2-2x+1)(x^2-2x+1)(x^2-2x+1)(x^2-2x+1)(x^2-2x+1)(x^2-2x+1)(x^2-2x+1)(x^2-2x+1)}$

PIRON BASTIEN

Note: 20/20 (score total: 31/31)

+113/1/5+

Veillez à bien noircir les cases. Codez votre numéro d'étudiant ci-contre → 3 3 3 3 3 3 3 3 et écrivez votre nom et prénom ci-dessous : 4 4 4 4 4 4 4 4 Nom et prénom : 5 5 5 5 5 5 PIRON Basten 6 6 6 6 6 6 6 7 Attention à ne pas vous tromper, 8 8 8 8 8 8 8 toute erreur invalide la copie! 9 9 9 9 9 9

Fdm2 – Printemps 2019

Règlement – L'épreuve dure 90 minutes. Les calculatrices sont interdites. Les téléphones portables doivent être éteints. Il n'est admis de consulter aucun document. Les questions ont une seule bonne réponse, qui vaut 2 points. Cochez une seule réponse par question.

Question 1 Soient $\mathcal{F}_1 = (u_1, u_2), \ \mathcal{F}_2 = (u_2, u_3, u_4), \ \mathcal{F}_3 = (u_1, u_2, u_3), \ \mathcal{F}_4 = (u_1, u_2, u_3, u_4)$ quatre familles de vecteurs de \mathbb{R}^3 avec

 $u_1 = (1,0,2), \quad u_2 = (1,-1,-1), \quad u_3 = (2,-1,1), \quad u_4 = (3,-2,0).$

Alors

4/4

3/3

3/3

 \mathcal{F}_3 est une base de \mathbb{R}^3 . \mathcal{F}_4 est une base de \mathbb{R}^3 . \mathcal{F}_2 est une base de \mathbb{R}^3 . \mathcal{F}_3 aucune de ces familles n'est une base de \mathbb{R}^3 .

Soit $\beta = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 et $\beta' = (e_1', e_2', e_3')$ $P = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 1 & -1 \\ 1 & 1 & -2 \end{pmatrix}$ la matrice de Question 2

passage de β à β' . Soit u l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est

$$A = \begin{pmatrix} 0 & -1 & 1 \\ 1 & -2 & 1 \\ -1 & -1 & 2 \end{pmatrix} \quad \text{Calculer } D = P^{-1}AP$$

3/3

$$D = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

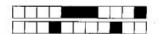
Question 3 L'intégrale $\int_{1}^{2} \frac{e^{1/x}}{x^2} dx$, calculée avec le changement de variable $u = \frac{1}{x}$, est égale à

Quel est le développement limité à l'ordre 2 en 0 de la fonction f définie par Question 4

$$f(x) = \frac{1 + e^{-x}}{1 - x^2}?$$

$$2 - x + \frac{5x^2}{2} + o(x^2). \qquad \boxed{-x + x^2 + o(x^2)}. \qquad \boxed{1 - x + x^2 + o(x^2)}.$$

$$\boxed{2 - 2x - 3x^2 + o(x^2)}. \qquad \boxed{1 - x + \frac{5x^2}{2} + o(x^2)}.$$



$ F = \frac{1}{X+1} + \frac{1}{(X+1)^2} - \frac{X-1}{X^2+1} $	$F = \frac{1}{X+1} + \frac{1}{(X+1)^2} + \frac{X-1}{X^2+1}$ $F = \frac{1}{X+1} + \frac{1}{(X+1)^2} - \frac{X+1}{X^2+1}$	$ F = \frac{1}{X+1} + \frac{2}{(X+1)^2} - \frac{X+1}{X^2+1} $
	$F = \frac{1}{X+1} + \frac{1}{(X+1)^2} - \frac{X+1}{X^2+1}$	

l'intervalle [0, 1]. Lesquelles?

Question 7 Soient $u_1 = (1,0,1), u_2 = (1,1,1), u_3 = (2,1,2), u_4 = (0,1,0)$ quatre vecteurs de \mathbb{R}^3 . Alors

 (u_2, u_3, u_4) est une famille libre de \mathbb{R}^3 . (u_1, u_2, u_3, u_4) est une famille libre de \mathbb{R}^3 .

 (u_1, u_2, u_3) est une famille libre de \mathbb{R}^3 . u_1, u_3, u_4) est une famille libre de \mathbb{R}^3 . Aucune de ces familles n'est libre.

Le produit de matrices $\begin{pmatrix} 2 & -1 \\ 0 & 4 \end{pmatrix} \begin{pmatrix} 3 & 5 & 7 \\ 1 & 0 & -2 \end{pmatrix}$ vaut Question 8

produit 2.5/2.5 impossible

Question 9 L'inverse de la matrice $\begin{pmatrix} 1 & 8 \\ 0 & 2 \end{pmatrix}$ est la matrice

 $\square \text{ l'inverse } \qquad \square \quad \begin{pmatrix} 1/2 & -4 \\ 0 & 1 \end{pmatrix} \qquad \square \quad \begin{pmatrix} 1 & -4 \\ 0 & 1/2 \end{pmatrix}$ \square $\begin{pmatrix} 1 & 0 \\ -4 & 2 \end{pmatrix}$ 2.5/2.5

Soit $\mathcal{B}=(e_1,e_2,e_3)$ la base canonique de \mathbb{R}^3 . Soit $u:\mathbb{R}^3\to\mathbb{R}^3$ définie pour tout $(x_1,x_2,x_3)\in\mathbb{R}^3$ par Question 10 $u(x) = (x_1 + 2x_2, 2x_2 + x_3, x_1 + x_3)$

L'image de u est :

3/3

4/4

3/3

 $\Box Vect(e_1 + 2e_2, 2e_2 + e_3, e_1 - e_3) \qquad \Box Vect(e_1 + e_3, e_1 + e_2)$ $Vect(2e_1 - e_2 + 2e_3) \qquad \Box Vect(e_1 + e_3, e_2 + e_3)$ $Vect(e_1,e_2,e_3)$ 3/3

PISCIONE THOMAS

Note: 8/2	0 (score	total :	12.5/31)
1010. O/L		, total .	12.0/01

+101/1/29+

Veillez à bien noircir les cases. 2 2 Codez votre numéro d'étudiant ci-contre -3 3 3 3 et écrivez votre nom et prénom ci-dessous : 3 4 4 4 4 4 4 Nom et prénom : PISCIONS TO 5 5 5 5 6 6 6 6 7 7 7 Attention à ne pas vous tromper, toute erreur invalide la copie! 8 9 9 9 9 9

Fdm2 - Printemps 2019

Règlement - L'épreuve dure 90 minutes. Les calculatrices sont interdites. Les téléphones portables doivent être éteints. Il n'est admis de consulter aucun document. Les questions ont une seule bonne réponse, qui vaut 2 points. Cochez une seule réponse par question.

Soient $\mathcal{F}_1 = (u_1, u_2), \mathcal{F}_2 = (u_2, u_3, u_4), \mathcal{F}_3 = (u_1, u_2, u_3), \mathcal{F}_4 = (u_1, u_2, u_3, u_4)$ quatre familles de vecteurs de R³ avec

$$u_1 = (1,0,2), u_2 = (1,-1,-1), u_3 = (2,-1,1), u_4 = (3,-2,0).$$

Alors

4/4

0/3

 \square \mathcal{F}_1 est une base de \mathbb{R}^3 . \mathcal{F}_2 est une base de \mathbb{R}^3 . \mathcal{F}_3 est une base de \mathbb{R}^3 . \mathcal{F}_4 est une base de \mathbb{R}^3 .

Soit $\beta = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 et $\beta' = (e_1', e_2', e_3')$ $P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{pmatrix}$ la matrice de passage

de β à β' . Soit u l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est

$$A = \begin{pmatrix} 3 & -2 & 0 \\ 4 & -3 & 0 \\ 4 & -2 & -1 \end{pmatrix} \quad \text{Calculer } D = P^{-1}AP$$

$$\square \quad D = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{pmatrix}$$

L'intégrale $\int_{1}^{x} \frac{1}{x \ln x} dx$, calculée avec le changement de variable $u = \ln x$, est égale à Question 3

Quel est le développement limité à l'ordre 2 en 0 de la fonction f définie par Question 4

$$f(x) = \frac{\cos(x)}{1+x}?$$

Question 5	Soit F la fraction rationnelle définie par : $F = \frac{-X^2 + 2X + 1}{(X - 1)^2(X^2 + 1)}$, déterminer sa décomposition en éléments
simples parmi	les proposition suivantes :	

0/4

0/3

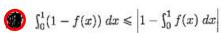
	177	1	. 2	X-1
\Box	r =	$\overline{X-1}$	$+\frac{2}{(X-1)^2}$	$+ \frac{1}{X^2+1}$

$$F = -\frac{1}{X-1} + \frac{1}{(X-1)^2} - \frac{X+1}{X^2+1}$$

$$F = -\frac{1}{X-1} + \frac{1}{(X-1)^2} + \frac{X+1}{X^2+1}$$

$$F = -\frac{1}{X-1} + \frac{1}{(X-1)^2} + \frac{X+1}{X^2+1}$$

Soit $f:[0,1] \rightarrow [0,1]$ une fonction intégrable quelconque. Ci-dessous, seules deux affirmations sont nécessairement justes. Lesquelles?



Question 7 Soient

$$u_1 = (1, -2, 1), u_2 = (1, 1, 1), u_3 = (1, 0, 0), u_4 = (2, -4, 2)$$

quatre vecteurs de R³. Alors

 (u_1, u_2, u_3, u_4) est une famille libre de \mathbb{R}^3 . (u_2, u_3, u_4) est une famille libre de \mathbb{R}^3 . Aucune de ces familles n'est libre. $[u_1, u_2, u_3)$ est une famille libre de \mathbb{R}^3 .

 $[u_1, u_3, u_4)$ est une famille libre de \mathbb{R}^3 .

Le produit de matrices $\begin{pmatrix} 3 \\ -1 \\ 0 \end{pmatrix}$ $\begin{pmatrix} 1 & 5 & 2 \end{pmatrix}$ vaut

2.5/2.5

Question 9 L'inverse de la matrice $\begin{pmatrix} 0 & 2 \\ 1 & 6 \end{pmatrix}$ est la matrice

0/2.5

 $\square \quad \begin{pmatrix} 0 & 1 \\ 1/2 & -3 \end{pmatrix} \qquad \square \quad \text{l'inverse} \\ \text{n'existe pas} \qquad \qquad \bigcirc \quad \begin{pmatrix} 3 & -1 \\ -1/2 & 0 \end{pmatrix} \qquad \bowtie \quad \begin{pmatrix} -3 & 1 \\ 1/2 & 0 \end{pmatrix}$

Soit $\mathcal{B}=(e_1,e_2,e_3)$ la base canonique de \mathbb{R}^3 . Soit $u:\mathbb{R}^3\to\mathbb{R}^3$ définie pour tout $(x_1,x_2,x_3)\in\mathbb{R}^3$ par Question 10

$$u(x) = (x_1 - 2x_2, 2x_2 - x_3, x_1 - x_3)$$

L'image de u est :

 $\bigvee \text{Vect}(e_1+e_3,e_1-e_2)$

QUINTON MARIE

Note: 9.5/20 (score total: 15/31)

+108/1/15+

 $\boxed{1} \square 1 \square 1 \square 1 \square 1 \square 1$ Veillez à bien noircir les cases. 2 2 2 2 2 2 2 2 2 2 Codez votre numéro d'étudiant ci-contre -3 3 3 3 3 3 3 et écrivez votre nom et prénom ci-dessous : Nom et prénom : 5 5 5 5 5 5 QUINTON 6 6 6 6 6 6 6 7 7 7 7 7 7 Attention à ne pas vous tromper, 8 8 8 8 8 toute erreur invalide la copie! 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9

Fdm2 – Printemps 2019

Règlement – L'épreuve dure 90 minutes. Les calculatrices sont interdites. Les téléphones portables doivent être éteints. Il n'est admis de consulter aucun document. Les questions ont une seule bonne réponse, qui vaut 2 points. Cochez une seule réponse par question.

Question 1 Soient $\mathcal{F}_1 = (u_1, u_2), \ \mathcal{F}_2 = (u_2, u_3, u_4), \ \mathcal{F}_3 = (u_1, u_2, u_3), \ \mathcal{F}_4 = (u_1, u_2, u_3, u_4)$ quatre familles de vecteurs de R3 avec $u_1 = (1, 1, 2), u_2 = (1, 0, 1), u_3 = (0, 1, 1), u_4 = (1, 1, 1).$

Alors

3/3

 \mathcal{F}_2 est une base de \mathbb{R}^3 . \square aucune de ces familles n'est une base de \mathbb{R}^3 . \square \mathcal{F}_4 est une base de \mathbb{R}^3 . \square \mathcal{F}_1 est une base de \mathbb{R}^3 . 4/4

Soit $\beta=(e_1,e_2,e_3)$ la base canonique de \mathbb{R}^3 et $\beta'=(e_1',e_2',e_3')$ $P=\begin{pmatrix} 1 & 1 & -1 \\ 2 & 1 & -1 \\ 1 & 1 & -2 \end{pmatrix}$ la matrice de

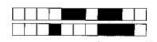
passage de
$$\beta$$
 à β' . Soit u l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est :
$$A = \begin{pmatrix} 0 & -1 & 1 \\ 1 & -2 & 1 \\ -1 & -1 & 2 \end{pmatrix}.$$
 Calculer $D = P^{-1}AP$

3/3

L'intégrale $\int_0^1 \frac{e^x}{e^x + 3} dx$, calculée avec le changement de variable $u = e^x$, est égale à Question 3

Quel est le développement limité à l'ordre 2 en 0 de la fonction f définie par Question 4

$$f(x) = \frac{\sin x}{1+x}?$$



Question 5	Soit F la fraction rationnelle définie par : $F=$	$=\frac{3X^2+2X+1}{X^2(X^2+X+1)}$, déterminer sa décomposition en élément
simples parmi	les proposition suivantes :	. (

$F = \frac{1}{X} + \frac{1}{X^2} - \frac{X-1}{X^2 + X + 1}$	X	F =	$\frac{1}{X}$ +	$\frac{1}{X^2}$ -	$\frac{X-1}{X^2+X+1}$
---	---	-----	-----------------	-------------------	-----------------------

	E -	1 .	1	X+1
	1	X	X^2	X^2+X+1
	F =	$\frac{1}{37} +$	$\frac{1}{X^2} +$	X-1
APRIL 1		X ·	X	$X^2 + X + 1$

Question 6 Soit $f:[-1,1] \to \mathbb{R}$ une fonction continue. Ci-dessous, seules deux affirmations sont nécessairement justes. Lesquelles?

0/4

$\inf_{x \in [-1,1]} f(x) \le \int_0^1 f(x) dx \le \sup_{x \in [-1,1]} f(x)$
il existe $c \in [-1, 1]$ tel que $\int_{-1}^{1} f(x) dx = 2f(c)$

il existe $c \in [-1,$	If tel que \int_{-1}^{2}	$f(x) \ dx = 2f(c)$
il existe $c \in$	[-1,1] tel que	$e \int_0^1 f(x) \ dx = 2f(a)$

il existe $c \in [0,1]$ tel que $\int_{-1}^{1} f(x) dx = 2f(c)$

Aucune de ces réponses n'est correcte.

Question 7 Soient

$$u_1 = (-1, 2, 1), u_2 = (1, -1, 1), u_3 = (0, 1, 2), u_4 = (1, 0, 3)$$

quatre vecteurs de R3. Alors

0/3

 (u_1, u_2, u_3) est une famille libre de \mathbb{R}^3 . (u_1, u_3, u_4) est une famille libre de \mathbb{R}^3 .

 (u_2, u_3, u_4) est une famille libre de \mathbb{R}^3 . Aucune de ces familles n'est libre.

 (u_1, u_2, u_3, u_4) est une famille libre de \mathbb{R}^3 .

Le produit de matrices $\begin{pmatrix} 2 & 1 \\ -1 & 3 \\ 5 & 0 \end{pmatrix} \begin{pmatrix} 7 & -2 & 1 \\ 0 & 3 & -1 \end{pmatrix}$ vaut Question 8

2.5/2.5

$$\begin{pmatrix} 14 & -1 & 1 \\ -7 & 11 & -4 \\ 35 & -10 & 5 \end{pmatrix} \qquad \qquad \boxed{\qquad} \begin{array}{c} \text{produit} \\ \text{impossible} \end{array}$$

\Box	(21	1)
	(-8	9)

 $\begin{bmatrix}
 14 & 1 & 1 \\
 7 & 5 & 4 \\
 35 & 10 & 5
 \end{bmatrix}$

L'inverse de la matrice $\begin{pmatrix} 4 & 8 \\ 2 & 4 \end{pmatrix}$ est la matrice Question 9

2.5/2.5

$$\square \begin{pmatrix} 4 & -2 \\ -8 & 4 \end{pmatrix} \qquad \square \begin{pmatrix} -4 & 2 \\ 8 & -4 \end{pmatrix} \qquad \blacksquare$$

Soit $\mathcal{B} = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 . Soit $u : \mathbb{R}^3 \to \mathbb{R}^3$ définie pour tout $(x_1, x_2, x_3) \in \mathbb{R}^3$ par Question 10 $u(x) = (x_1 + 2x_2, 2x_2 + x_3, x_1 + x_3)$

L'image de u est :

$$\bigvee$$
 Vect. $(e_1 + e_3, e_1 + e_2)$

$$Vect(e_1 + e_3, e_1 + e_2) \qquad Vect(e_1 + 2e_2, 2e_2 + e_3, e_1 - e_3) \qquad Vect(2e_1 - e_2 + 2e_3)$$

$$Vect(e_1, e_2, e_3) \qquad Vect(e_1 + e_3, e_2 + e_3)$$

$$Vect(2e_1 - e_2 + 2e_3)$$

VANDEN I	HENDE CAT	HERINE
Note: 14/2	0 (score tota	L: 22/31)

3/3

\Box	T	210		T	

+112/1/7+ 0 0 0 0 Veillez à bien noircir les cases. 2 2 2 2 2 Codez votre numéro d'étudiant ci-contre ---et écrivez votre nom et prénom ci-dessous : 3 4 4 4 4 Nom et prénom : 5 5 5 5 6 6 6 Attention à ne pas vous tromper, toute erreur invalide la copie! 8 9 9 9 9 Fdm2 - Printemps 2019 Règlement – L'épreuve dure 90 minutes. Les calculatrices sont interdites. Les téléphones portables doivent être éteints. Il n'est admis de consulter aucun document. Les questions ont une seule bonne réponse, qui vaut 2 points. Cochez une seule réponse par question. Question 1 Soient $\mathcal{F}_1 = (u_1, u_2), \ \mathcal{F}_2 = (u_2, u_3, u_4), \ \mathcal{F}_3 = (u_1, u_2, u_3), \ \mathcal{F}_4 = (u_1, u_2, u_3, u_4)$ quatre familles de vecteurs de \mathbb{R}^3 avec $u_1 = (1, 0, -1), u_2 = (1, 0, 0), u_3 = (2, 0, -1), u_4 = (1, -1, 0).$ Alors \mathcal{F}_4 est une base de \mathbb{R}^3 . \square \mathcal{F}_1 est une base de \mathbb{R}^3 . \square \mathcal{F}_3 est une base de \mathbb{R}^3 . \square \mathcal{F}_2 est une base de \mathbb{R}^3 .

Soit $\beta = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 et $\beta' = (e'_1, e'_2, e'_3)$ $P = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 1 & -1 \\ 1 & 1 & -2 \end{pmatrix}$ la matrice de passage de β à β' . Soit u l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est : $A = \begin{pmatrix} 0 & -1 & 1 \\ 1 & -2 & 1 \\ -1 & -1 & 2 \end{pmatrix}$. Calculer $D = P^{-1}AP$

0/3

L'intégrale $\int_{1}^{c} \frac{1}{x(\ln x)^2} dx$, calculée avec le changement de variable $u = \ln x$, est égale à Question 3

Question 4 Quel est le développement limité à l'ordre 2 en 0 de la fonction f définie par

$$f(x) = \frac{1 + e^{-x}}{1 - x^2}?$$

Question 5	Soit F la fraction rationnelle définie par : $F = \frac{2X^3 + 2X^2 - 2X + 2}{(X^2 - 1)^2}$, déterminer	sa décomposition en éléments
simples parmi	mi les proposition suivantes :	

 $F = \frac{1}{X-1} + \frac{2}{(X-X)^2} + \frac{1}{X+1} + \frac{2}{(X+1)^2}$ $F = -\frac{1}{X-1} + \frac{1}{(X-1)^2} - \frac{1}{X+1} + \frac{1}{(X+1)^2}$ $F = \frac{1}{X-1} + \frac{1}{(X-1)^2} + \frac{1}{X+1} + \frac{1}{(X+1)^2}$ $F = \frac{1}{X-1} - \frac{1}{(X-1)^2} + \frac{1}{X+1} - \frac{1}{(X+1)^2}$

Soit $f:[0,1] \to \mathbb{R}$ une fonction. Ci-dessous, seules deux affirmations sont nécessairement justes. Question 6 Lesquelles?

si f est en escalier sur [0,1] alors il existe (f_n) , suite de fonctions continues telle que $\int_0^1 f(x)dx = \lim_{n \to +\infty} \int_0^1 f_n(x)dx$ si f est continue sur [0,1], alors f est intégrable sur [0,1]

si f n'est pas continue sur [0,1] alors f n'est pas intégrable-sur [0,1]

si f est continue sur [0, 1] alors il existe (f_n) , suite de fonctions en escaliers telle que $\int_0^1 f(x)dx = \lim_{n \to +\infty} \int_0^1 f_n(x)dx$ si f est intégrable sur [0,1], alors f est une fonction en escalier Aucune de ces réponses n'est correcte.

Question 7 Soient

$$u_1 = (-1, 0, 1), u_2 = (2, 0, 3), u_3 = (1, 0, 2), u_4 = (3, 0, 5)$$

quatre vecteurs de R³. Alors

 (u_1, u_2, u_3, u_4) est une famille libre de \mathbb{R}^3 . (u_1, u_2, u_3) est une famille libre de \mathbb{R}^3 . (u_1, u_3, u_4) est une famille libre de \mathbb{R}^3 . $[u_2, u_3, u_4)$ est une famille libre de \mathbb{R}^3 .

Aucune de ces familles n'est libre.

Le produit de matrices $\begin{pmatrix} -1 & 2 \\ 3 & -1 \end{pmatrix} \begin{pmatrix} 3 & 5 & 1 \\ -1 & 0 & 2 \end{pmatrix}$ vaut Question 8

2.5/2.5

L'inverse de la matrice $\begin{pmatrix} 9 & 1 \\ 3 & 0 \end{pmatrix}$ est la matrice Question 9

2.5/2.5

3/3

4/4

0/3

Soit $\mathcal{B}=(e_1,e_2,e_3)$ la base canonique de \mathbb{R}^3 . Soit $u:\mathbb{R}^3\to\mathbb{R}^3$ définie pour tout $(x_1,x_2,x_3)\in\mathbb{R}^3$ par Question 10

$$u(x) = (x_1 + 2x_2, 2x_2 + x_3, x_1 + x_3)$$

L'image de u est :

 $\operatorname{ct}(e_1, e_2, e_3)$ \square $\operatorname{Vect}(e_1 + e_3, e_1 + e_2)$ \square $\operatorname{Vect}(e_1 + 2e_2, 2e_2 + e_3, e_1 - e_3)$ \square $Vect(e_1, e_2, e_3)$

ZOUDE ANTOINE

Note: 14.5/20 (score total: 22.5/31)

+104/1/23+

Veillez à bien noircir les cases.

Codez votre numéro d'étudiant ci-contre --et écrivez votre nom et prénom ci-dessous :

Nom et prénom :

24DE Antin

Attention à ne pas vous tromper, toute erreur invalide la copie!

0		0	30 0	0		∐0	
1	1			$[\cdot]1$	\Box 1	廖1	\square 1
	\square_2		\square_2	\square_2	\square_2	\square_2	\square_2
<u>3</u>	\square 3	<u>3</u>		$\square 3$	3	<u></u> 3	
$\Box 4$	4		<u></u>	4	$\Box 4$	4	4
5	<u></u> 5	<u></u>	<u></u>	5		<u></u>	<u></u>
<u>6</u>	□6		<u>6</u>	<u>6</u>	<u></u> 6	□6	□6
□7	7	<u>_</u> 7	<u> </u>	_7	147	<u> </u>	□ 7
8	<u>8</u>	8	<u>8</u>	<u>8</u>	8	8	8
	22 24	100					

Fdm2 - Printemps 2019

Règlement – L'épreuve dure 90 minutes. Les calculatrices sont interdites. Les téléphones portables doivent être éteints. Il n'est admis de consulter aucun document. Les questions ont une seule bonne réponse, qui vaut 2 points. Cochez une seule réponse par question.

Soient $\mathcal{F}_1 = (u_1, u_2), \ \mathcal{F}_2 = (u_2, u_3, u_4), \ \mathcal{F}_3 = (u_1, u_2, u_3), \ \mathcal{F}_4 = (u_1, u_2, u_3, u_4)$ quatre familles de vecteurs de \mathbb{R}^3 avec

$$u_1 = (-1, 0, 1), u_2 = (2, 0, 3), u_3 = (3, 0, 2), u_4 = (1, 0, 1).$$

Alors

4/4

 \mathcal{F}_2 est une base de \mathbb{R}^3 . \square \mathcal{F}_1 est une base de \mathbb{R}^3 . \square \mathcal{F}_3 est une base \mathbb{R}^3 . \square \mathcal{F}_4 est une base de \mathbb{R}^3 . \square aucune de ces familles n'est une base de \mathbb{R}^3 .

Soit $\beta = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 et $\beta' = (e'_1, e'_2, e'_3)$ $P = \begin{pmatrix} -1 & 1 & 0 \\ 3 & -1 & -1 \\ 1 & 0 & -1 \end{pmatrix}$ la matrice de

passage de
$$\beta$$
 à β' . Soit u l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est $A = \begin{pmatrix} -1 & -1 & -1 \\ 7 & 5 & -5 \\ 3 & 2 & -2 \end{pmatrix}$. Calculer $D = P^{-1}AP$

0/3

L'intégrale $\int_0^1 \frac{e^x}{2\sqrt{e^x+1}} dx$, calculée avec le changement de variable $u=e^x$, est égale à Question 3

3/3

Quel est le développement limité à l'ordre 2 en 0 de la fonction f définie par Question 4

$$f(x) = \frac{e^x}{\cos x}?$$

Question 5	Soit F la fraction rationnelle définie par : $F = \frac{3X^2 - 2X + 1}{X^2(X^2 - X + 1)}$, déterminer sa décomposition en élément
simples parmi	les proposition suivantes :

F = -	$-\frac{1}{X} +$	$\frac{1}{X^2}$	$+\frac{X-1}{X^2-X+1}$

$$F = -\frac{1}{X} + \frac{1}{X^2} - \frac{X+1}{X^2 - X+1}$$

$$F = -\frac{1}{X} + \frac{1}{X^2} - \frac{X}{X^2 - X+1}$$

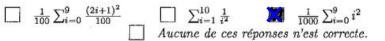
$$F = -\frac{1}{X} + \frac{1}{X^2} - \frac{X}{X^2 - X+1}$$

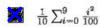
$$F = -\frac{1}{X} + \frac{1}{X^2} - \frac{X}{X^2 - X + 1}$$

Deux des sommes proposées ci-dessous donnent une approximation de l'aire sous la courbe de la fonction $f(x) = x^2$ sur l'intervalle [0, 1]. Lesquelles?

4/4

0/3





Question 7 Soient

$$u_1 = (-1, 1, 0), u_2 = (2, -1, 1), u_3 = (1, 0, 1), u_4 = (3, -1, 2)$$

quatre vecteurs de \mathbb{R}^3 . Alors

 (u_1, u_2, u_3) est une famille libre de \mathbb{R}^3 . (u_1, u_3, u_4) est une famille libre de \mathbb{R}^3 . (u_2, u_3, u_4) est une famille libre de \mathbb{R}^3 . (u_1, u_2, u_3, u_4) est une famille libre de \mathbb{R}^3 .

Aucune de ces familles n'est libre.

Le produit de matrices $\begin{pmatrix} 2 & -3 & 4 \\ 0 & 1 & 3 \end{pmatrix} \begin{pmatrix} 7 \\ 2 \\ -1 \end{pmatrix}$ vaut

2.5/2.5

$$\begin{bmatrix}
 14 & 0 \\
 -6 & 2 \\
 -4 & -3
 \end{bmatrix}
 \qquad \begin{bmatrix}
 \text{produit} \\
 \text{impossible}
 \end{bmatrix}$$

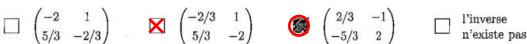
L'inverse de la matrice $\begin{pmatrix} 6 & 3 \\ 5 & 2 \end{pmatrix}$ est la matrice Question 9

0/2.5

3/3

$$\square \quad \begin{pmatrix} -2 & 1 \\ 5/3 & -2/3 \end{pmatrix}$$

$$\left(\begin{array}{cc} -2/3 & 1\\ 5/3 & -\end{array}\right)$$



Soit $\mathcal{B} = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 . Soit $u : \mathbb{R}^3 \to \mathbb{R}^3$ définie pour tout $(x_1, x_2, x_3) \in \mathbb{R}^3$ par Question 10

$$u(x) = (x_1 + 2x_2, 2x_2 + x_3, x_1 - x_3)$$

L'image de u est :