Université Claude Bernard, Lyon I 43, boulevard 11 novembre 1918 69622 Villeurbanne cedex, France Licence Sciences & Technologies Spécialité Mathématiques Math IV-analyse Année 2015/2016

Série n°5 : Développement de fonctions en séries entières

Exercice I : Série entière et équation différentielle

On considère l'équation différentielle

$$f''(x) - 4f(x) = 0. (1)$$

On cherche f sous la forme $f(x) = \sum_{n=0}^{+\infty} a_n x^n$, et vérifiant les conditions f(0) = 4 et f'(0) = 0.

Montrer que la seule solution est $f(x) = \sum_{p=0}^{+\infty} \frac{4^{p+1}}{(2p)!} x^{2p}$, et l'exprimer à l'aide de fonctions usuelles.

Exercice II : Série entière et équation différentielle

On cherche le développement en série entière de $f(x) = (1+x)^{\alpha}$, pour $\alpha \in \mathbb{R}$, par la "méthode de l'équation différentielle".

1. Montrer que f est solution de l'équation différentielle

$$\alpha f(x) - (1+x)f'(x) = 0. (2)$$

(Auriez-vous pu déterminer vous-même cette équation différentielle ?)

- 2. Déterminer les solutions de (2) développables en séries entières et calculer leur rayon de convergence.
- 3. Montrer que si g est solution de l'équation (2) sur un intervalle I ne contenant pas -1 alors il existe $C \in \mathbb{R}$ tel que $\forall x \in I$, $g(x) = C(1+x)^{\alpha}$.

Exercice III : Série de Taylor

Donner un exemple de fonction définie sur tout $\mathbb R$ mais dont la série de Taylor ne converge pas sur tout $\mathbb R$.

Exercice IV : Série de Taylor

Exemple classique (mais un peu lourd) : la série de Taylor converge, mais **pas vers la fonction!**On considère la fonction

$$f: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \begin{cases} \exp(-1/x^2) & \text{si } x \neq 0, \\ 0 & \text{si } x = 0. \end{cases}$$
(3)

- 1. Montrer par récurrence que pour tout $n \in \mathbb{N}$, il existe un polynôme $P_n(x)$ tel que pour tout $x \in \mathbb{R}^*$, $f^{(n)}(x) = \frac{P_n(x)}{x^{3n}} \exp(-1/x^2)$.
- 2. En déduire que pour tout $n \in \mathbb{N}$, $f^{(n)}(0) = 0$.
- 3. En déduire que f n'est pas développable en série entière en 0.

Exercice V : Série entière et rayon de convergence

Développer en série entière et déterminer les rayons de convergence : $\frac{1}{x-5}$, $\frac{1}{1+9x^2}$, $\frac{1}{(1+x)^2}$, $\ln(5-x)$.

Exercice VI : Série entière et rayon de convergence

Développer en série entière et déterminer les rayons de convergence : $\frac{1}{(2+x)^3}$, $\frac{1}{\sqrt[5]{32-x}}$, $\frac{1}{\sqrt{1-x^2}}$.

Exercice VII : Série entière de ln autour de 1

Développer ln(x) en série entière <u>autour de 1</u>.